SEGCloud: Semantic Segmentation of 3D Point Clouds

Type: Article

Publication Date: 2017-10-01

Citations: 741

DOI: https://doi.org/10.1109/3dv.2017.00067

Abstract

3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks(NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level segmentation that combines the advantages of NNs, trilinear interpolation(TI) and fully connected Conditional Random Fields (FC-CRF). Coarse voxel predictions from a 3D Fully Convolutional NN are transferred back to the raw 3D points via trilinear interpolation. Then the FC-CRF enforces global consistency and provides fine-grained semantics on the points. We implement the latter as a differentiable Recurrent NN to allow joint optimization. We evaluate the framework on two indoor and two outdoor 3D datasets (NYU V2, S3DIS, KITTI, Semantic3D.net), and show performance comparable or superior to the state-of-the-art on all datasets.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2021 International Conference on 3D Vision (3DV) - View

Similar Works

Action Title Year Authors
+ SEGCloud: Semantic Segmentation of 3D Point Clouds 2017 Lyne P. Tchapmi
Christopher Choy
Iro Armeni
JunYoung Gwak
Silvio Savarese
+ Small but Mighty: Enhancing 3D Point Clouds Semantic Segmentation with U-Next Framework 2023 Ziyin Zeng
Qingyong Hu
Zhong Xie
Jian Zhou
Yongyang Xu
+ Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic Segmentation 2022 Damien Robert
Bruno Vallet
Loïc Landrieu
+ PDF Chat Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic Segmentation 2022 Damien Robert
Bruno Vallet
Loïc Landrieu
+ RESSCAL3D: Resolution Scalable 3D Semantic Segmentation of Point Clouds 2023 Remco Royen
Adrian Munteanu
+ Fully-Convolutional Point Networks for Large-Scale Point Clouds 2018 Dario Rethage
Johanna Wald
Jürgen Sturm
Nassir Navab
Federico Tombari
+ Box2Seg: Learning Semantics of 3D Point Clouds with Box-Level Supervision 2022 Yan Liu
Qingyong Hu
Yinjie Lei
Kai Xu
Jonathan Li
Yulan Guo
+ PDF Chat Tangent Convolutions for Dense Prediction in 3D 2018 Maxim Tatarchenko
Jaesik Park
Vladlen Koltun
Qian-Yi Zhou
+ Tangent Convolutions for Dense Prediction in 3D 2018 Maxim Tatarchenko
Jaesik Park
Vladlen Koltun
Qian-Yi Zhou
+ S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point Clouds 2020 Ran Cheng
Christopher Agia
Yuan Ren
Xin-Hai Li
Bingbing Liu
+ S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point Clouds 2020 Ran Cheng
Christopher Agia
Yuan Ren
Xinhai Li
Bingbing Liu
+ PDF Chat PS^2-Net: A Locally and Globally Aware Network for Point-Based Semantic Segmentation 2019 Na Zhao
Tat‐Seng Chua
Gim Hee Lee
+ PDF Chat Push-the-Boundary: Boundary-aware Feature Propagation for Semantic Segmentation of 3D Point Clouds 2022 Shenglan Du
Nail Ibrahimli
Jantien Stoter
Julian F. P. Kooij
Liangliang Nan
+ Push-the-Boundary: Boundary-aware Feature Propagation for Semantic Segmentation of 3D Point Clouds 2022 Shenglan Du
Nail Ibrahimli
Jantien Stoter
Julian F. P. Kooij
Liangliang Nan
+ PDF Chat Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds 2017 Francis Engelmann
Theodora Kontogianni
Alexander Hermans
Bastian Leibe
+ Deep Projective 3D Semantic Segmentation 2017 Felix Järemo Lawin
Martin Danelljan
Patrik Tosteberg
Goutam Bhat
Fahad Shahbaz Khan
Michael Felsberg
+ Deep Projective 3D Semantic Segmentation 2017 Felix Järemo Lawin
Martin Danelljan
Patrik Tosteberg
Goutam Bhat
Fahad Shahbaz Khan
Michael Felsberg
+ SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network 2021 Mingmei Cheng
Le Hui
Jin Xie
Jian Yang
+ JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds with Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields 2019 Quang-Hieu Pham
Duc Thanh Nguyen
Binh‐Son Hua
Gemma Roig
Sai-Kit Yeung
+ JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds with Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields 2019 Quang-Hieu Pham
Duc Thanh Nguyen
Binh‐Son Hua
Gemma Roig
Sai-Kit Yeung

Works Cited by This (28)

Action Title Year Authors
+ PDF Chat Learning Spatiotemporal Features with 3D Convolutional Networks 2015 Du Tran
Lubomir Bourdev
Rob Fergus
Lorenzo Torresani
Manohar Paluri
+ Contextually Guided Semantic Labeling and Search for 3D Point Clouds 2011 Abhishek Anand
Hema Swetha Koppula
Thorsten Joachims
Ashutosh Saxena
+ PDF Chat Fully convolutional networks for semantic segmentation 2015 Jonathan Long
Evan Shelhamer
Trevor Darrell
+ PDF Chat Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture 2015 David Eigen
Rob Fergus
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
+ PDF Chat Conditional Random Fields as Recurrent Neural Networks 2015 Shuai Zheng
Sadeep Jayasumana
Bernardino Romera‐Paredes
Vibhav Vineet
Zhizhong Su
Dalong Du
Chang Huang
Philip H. S. Torr
+ Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials 2012 Philipp Krähenbühl
Vladlen Koltun
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ PDF Chat Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images 2016 Shuran Song
Jianxiong Xiao
+ Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation 2016 Konstantinos Kamnitsas
Christian Ledig
Virginia Newcombe
Joanna Simpson
Andrew D. Kane
David Menon
Daniel Rueckert
Ben Glocker