Author Description

Login to generate an author description

Ask a Question About This Mathematician

Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep learning techniques for image recognition to … Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep learning techniques for image recognition to tackle pixel-level labelling tasks. One central issue in this methodology is the limited capacity of deep learning techniques to delineate visual objects. To solve this problem, we introduce a new form of convolutional neural network that combines the strengths of Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs)-based probabilistic graphical modelling. To this end, we formulate Conditional Random Fields with Gaussian pairwise potentials and mean-field approximate inference as Recurrent Neural Networks. This network, called CRF-RNN, is then plugged in as a part of a CNN to obtain a deep network that has desirable properties of both CNNs and CRFs. Importantly, our system fully integrates CRF modelling with CNNs, making it possible to train the whole deep network end-to-end with the usual back-propagation algorithm, avoiding offline post-processing methods for object delineation. We apply the proposed method to the problem of semantic image segmentation, obtaining top results on the challenging Pascal VOC 2012 segmentation benchmark.
Recent progress in computer vision has been driven by high-capacity models trained on large datasets. Unfortunately, creating large datasets with pixel-level labels has been extremely costly due to the amount … Recent progress in computer vision has been driven by high-capacity models trained on large datasets. Unfortunately, creating large datasets with pixel-level labels has been extremely costly due to the amount of human effort required. In this paper, we present an approach to rapidly creating pixel-accurate semantic label maps for images extracted from modern computer games. Although the source code and the internal operation of commercial games are inaccessible, we show that associations between image patches can be reconstructed from the communication between the game and the graphics hardware. This enables rapid propagation of semantic labels within and across images synthesized by the game, with no access to the source code or the content. We validate the presented approach by producing dense pixel-level semantic annotations for 25 thousand images synthesized by a photorealistic open-world computer game. Experiments on semantic segmentation datasets show that using the acquired data to supplement real-world images significantly increases accuracy and that the acquired data enables reducing the amount of hand-labeled real-world data: models trained with game data and just 1/3 of the CamVid training set outperform models trained on the complete CamVid training set.
We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The … We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The proposed approach has three key ingredients: (1) 3D object models are rendered in 3D models of complete scenes with realistic materials and lighting, (2) plausible geometric configuration of objects and cameras in a scene is generated using physics simulation, and (3) high photorealism of the synthesized images is achieved by physically based rendering. When trained on images synthesized by the proposed approach, the Faster R-CNN object detector [1] achieves a 24% absolute improvement of [email protected] on Rutgers APC [2] and 11% on LineMod-Occluded [3] datasets, compared to a baseline where the training images are synthesized by rendering object models on top of random photographs. This work is a step towards being able to effectively train object detectors without capturing or annotating any real images. A dataset of 400K synthetic images with ground truth annotations for various computer vision tasks will be released on the project website: thodan.github.io/objectsynth.
We present a new interactive and online approach to 3D scene understanding. Our system, SemanticPaint, allows users to simultaneously scan their environment whilst interactively segmenting the scene simply by reaching … We present a new interactive and online approach to 3D scene understanding. Our system, SemanticPaint, allows users to simultaneously scan their environment whilst interactively segmenting the scene simply by reaching out and touching any desired object or surface. Our system continuously learns from these segmentations, and labels new unseen parts of the environment. Unlike offline systems where capture, labeling, and batch learning often take hours or even days to perform, our approach is fully online. This provides users with continuous live feedback of the recognition during capture, allowing to immediately correct errors in the segmentation and/or learning—a feature that has so far been unavailable to batch and offline methods. This leads to models that are tailored or personalized specifically to the user's environments and object classes of interest, opening up the potential for new applications in augmented reality, interior design, and human/robot navigation. It also provides the ability to capture substantial labeled 3D datasets for training large-scale visual recognition systems.
We present a new interactive and online approach to 3D scene understanding. Our system, SemanticPaint , allows users to simultaneously scan their environment whilst interactively segmenting the scene simply by … We present a new interactive and online approach to 3D scene understanding. Our system, SemanticPaint , allows users to simultaneously scan their environment whilst interactively segmenting the scene simply by reaching out and touching any desired object or surface. Our system continuously learns from these segmentations, and labels new unseen parts of the environment. Unlike offline systems where capture, labeling, and batch learning often take hours or even days to perform, our approach is fully online. This provides users with continuous live feedback of the recognition during capture, allowing to immediately correct errors in the segmentation and/or learning—a feature that has so far been unavailable to batch and offline methods. This leads to models that are tailored or personalized specifically to the user's environments and object classes of interest, opening up the potential for new applications in augmented reality, interior design, and human/robot navigation. It also provides the ability to capture substantial labeled 3D datasets for training large-scale visual recognition systems.
The risk of unauthorized remote access of streaming video from networked cameras underlines the need for stronger privacy safeguards. We propose a lens-free coded aperture camera system for human action … The risk of unauthorized remote access of streaming video from networked cameras underlines the need for stronger privacy safeguards. We propose a lens-free coded aperture camera system for human action recognition that is privacy-preserving. While coded aperture systems exist, we believe ours is the first system designed for action recognition without the need for image restoration as an intermediate step. Action recognition is done using a deep network that takes in as input, non-invertible motion features between pairs of frames computed using phase correlation and log-polar transformation. Phase correlation encodes translation while the log polar transformation encodes in-plane rotation and scaling. We show that the translation features are independent of the coded aperture design, as long as its spectral response within the bandwidth has no zeros. Stacking motion features computed on frames at multiple different strides in the video can improve accuracy. Preliminary results on simulated data based on a subset of the UCF and NTU datasets are promising. We also describe our prototype lens-free coded aperture camera system, and results for real captured videos are mixed.
Humans describe images in terms of nouns and adjectives while algorithms operate on images represented as sets of pixels. Bridging this gap between how humans would like to access images … Humans describe images in terms of nouns and adjectives while algorithms operate on images represented as sets of pixels. Bridging this gap between how humans would like to access images versus their typical representation is the goal of image parsing, which involves assigning object and attribute labels to pixel. In this paper we propose treating nouns as object labels and adjectives as visual attribute labels. This allows us to formulate the image parsing problem as one of jointly estimating per-pixel object and attribute labels from a set of training images. We propose an efficient (interactive time) solution. Using the extracted labels as handles, our system empowers a user to verbally refine the results. This enables hands-free parsing of an image into pixel-wise object/attribute labels that correspond to human semantics. Verbally selecting objects of interests enables a novel and natural interaction modality that can possibly be used to interact with new generation devices (e.g. smart phones, Google Glass, living room devices). We demonstrate our system on a large number of real-world images with varying complexity. To help understand the tradeoffs compared to traditional mouse based interactions, results are reported for both a large scale quantitative evaluation and a user study.
Contrastive learning relies on an assumption that positive pairs contain related views that share certain underlying information about an instance, e.g., patches of an image or co-occurring multimodal signals of … Contrastive learning relies on an assumption that positive pairs contain related views that share certain underlying information about an instance, e.g., patches of an image or co-occurring multimodal signals of a video. What if this assumption is violated? The literature suggests that contrastive learning produces suboptimal representations in the presence of noisy views, e.g., false positive pairs with no apparent shared information. In this work, we pro-pose a new contrastive loss function that is robust against noisy views. We provide rigorous theoretical justifications by showing connections to robust symmetric losses for noisy binary classification and by establishing a new contrastive bound for mutual information maximization based on the Wasserstein distance measure. The proposed loss is completely modality-agnostic and a simple drop-in replacement for the InfoNCE loss, which makes it easy to apply to ex-isting contrastive frameworks. We show that our approach provides consistent improvements over the state-of-the-art on image, video, and graph contrastive learning bench-marks that exhibit a variety of real-world noise patterns.
We present an open-source, real-time implementation of SemanticPaint, a system for geometric reconstruction, object-class segmentation and learning of 3D scenes. Using our system, a user can walk into a room … We present an open-source, real-time implementation of SemanticPaint, a system for geometric reconstruction, object-class segmentation and learning of 3D scenes. Using our system, a user can walk into a room wearing a depth camera and a virtual reality headset, and both densely reconstruct the 3D scene and interactively segment the environment into object classes such as 'chair', 'floor' and 'table'. The user interacts physically with the real-world scene, touching objects and using voice commands to assign them appropriate labels. These user-generated labels are leveraged by an online random forest-based machine learning algorithm, which is used to predict labels for previously unseen parts of the scene. The entire pipeline runs in real time, and the user stays 'in the loop' throughout the process, receiving immediate feedback about the progress of the labelling and interacting with the scene as necessary to refine the predicted segmentation.
Machines are a long way from robustly solving open-world perception-control tasks, such as first-person view (FPV) aerial navigation. While recent advances in end-to- end Machine Learning, especially Imitation Learning and … Machines are a long way from robustly solving open-world perception-control tasks, such as first-person view (FPV) aerial navigation. While recent advances in end-to- end Machine Learning, especially Imitation Learning and Reinforcement appear promising, they are constrained by the need of large amounts of difficult-to-collect labeled real- world data. Simulated data, on the other hand, is easy to generate, but generally does not render safe behaviors in diverse real-life scenarios. In this work we propose a novel method for learning robust visuomotor policies for real-world deployment which can be trained purely with simulated data. We develop rich state representations that combine supervised and unsupervised environment data. Our approach takes a cross-modal perspective, where separate modalities correspond to the raw camera data and the system states relevant to the task, such as the relative pose of gates to the drone in the case of drone racing. We feed both data modalities into a novel factored architecture, which learns a joint lowdimensional embedding via Variational Auto Encoders. This compact representation is then fed into a control policy, which we trained using imitation learning with expert trajectories in a simulator. We analyze the rich latent spaces learned with our proposed representations, and show that the use of our cross-modal architecture significantly improves control policy performance as compared to end-to-end learning or purely unsupervised feature extractors. We also present real-world results for drone navigation through gates in different track configurations and environmental conditions. Our proposed method, which runs fully onboard, can successfully generalize the learned representations and policies across simulation and reality, significantly outperforming baseline approaches.
Humans describe images in terms of nouns and adjectives while algorithms operate on images represented as sets of pixels. Bridging this gap between how humans would like to access images … Humans describe images in terms of nouns and adjectives while algorithms operate on images represented as sets of pixels. Bridging this gap between how humans would like to access images versus their typical representation is the goal of image parsing, which involves assigning object and attribute labels to pixel. In this paper we propose treating nouns as object labels and adjectives as visual attribute labels. This allows us to formulate the image parsing problem as one of jointly estimating per-pixel object and attribute labels from a set of training images. We propose an efficient (interactive time) solution. Using the extracted labels as handles, our system empowers a user to verbally refine the results. This enables hands-free parsing of an image into pixel-wise object/attribute labels that correspond to human semantics. Verbally selecting objects of interests enables a novel and natural interaction modality that can possibly be used to interact with new generation devices (e.g. smart phones, Google Glass, living room devices). We demonstrate our system on a large number of real-world images with varying complexity. To help understand the tradeoffs compared to traditional mouse based interactions, results are reported for both a large scale quantitative evaluation and a user study.
Diffracted scattering and occlusion are important acoustic effects in interactive auralization and noise control applications, typically requiring expensive numerical simulation. We propose training a convolutional neural network to map from … Diffracted scattering and occlusion are important acoustic effects in interactive auralization and noise control applications, typically requiring expensive numerical simulation. We propose training a convolutional neural network to map from a convex scatterer's cross-section to a 2D slice of the resulting spatial loudness distribution. We show that employing a full-resolution residual network for the resulting image-to-image regression problem yields spatially detailed loudness fields with a root-mean-squared error of less than 1 dB, at over 100x speedup compared to full wave simulation.
State-of-the-art methods for self-supervised sequential action alignment rely on deep networks that find correspondences across videos in time. They either learn frame-to-frame mapping across sequences, which does not leverage temporal … State-of-the-art methods for self-supervised sequential action alignment rely on deep networks that find correspondences across videos in time. They either learn frame-to-frame mapping across sequences, which does not leverage temporal information, or assume monotonic alignment between each video pair, which ignores variations in the order of actions. As such, these methods are not able to deal with common real-world scenarios that involve background frames or videos that contain non-monotonic sequence of actions. In this paper, we propose an approach to align sequential actions in the wild that involve diverse temporal variations. To this end, we propose an approach to enforce temporal priors on the optimal transport matrix, which leverages temporal consistency, while allowing for variations in the order of actions. Our model accounts for both monotonic and non-monotonic sequences and handles background frames that should not be aligned. We demonstrate that our approach consistently outperforms the state-of-the-art in self-supervised sequential action representation learning on four different benchmark datasets. Code is publicly available at https://github.com/weizheliu/VAVA.
Spatial understanding is a fundamental aspect of computer vision and integral for human-level reasoning about images, making it an important component for grounded language understanding. While recent text-to-image synthesis (T2I) … Spatial understanding is a fundamental aspect of computer vision and integral for human-level reasoning about images, making it an important component for grounded language understanding. While recent text-to-image synthesis (T2I) models have shown unprecedented improvements in photorealism, it is unclear whether they have reliable spatial understanding capabilities. We investigate the ability of T2I models to generate correct spatial relationships among objects and present VISOR, an evaluation metric that captures how accurately the spatial relationship described in text is generated in the image. To benchmark existing models, we introduce a dataset, $\mathrm{SR}_{2D}$, that contains sentences describing two or more objects and the spatial relationships between them. We construct an automated evaluation pipeline to recognize objects and their spatial relationships, and employ it in a large-scale evaluation of T2I models. Our experiments reveal a surprising finding that, although state-of-the-art T2I models exhibit high image quality, they are severely limited in their ability to generate multiple objects or the specified spatial relations between them. Our analyses demonstrate several biases and artifacts of T2I models such as the difficulty with generating multiple objects, a bias towards generating the first object mentioned, spatially inconsistent outputs for equivalent relationships, and a correlation between object co-occurrence and spatial understanding capabilities. We conduct a human study that shows the alignment between VISOR and human judgement about spatial understanding. We offer the $\mathrm{SR}_{2D}$ dataset and the VISOR metric to the community in support of T2I reasoning research.
We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to … We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to discover vulnerabilities in computer vision systems and gain insights into how models make decisions. 3DB captures and generalizes many robustness analyses from prior work, and enables one to study their interplay. Finally, we find that the insights generated by the system transfer to the physical world. We are releasing 3DB as a library (this https URL) alongside a set of example analyses, guides, and documentation: this https URL .
The ability to integrate context, including perceptual and temporal cues, plays a pivotal role in grounding the meaning of a linguistic utterance. In order to measure to what extent current … The ability to integrate context, including perceptual and temporal cues, plays a pivotal role in grounding the meaning of a linguistic utterance. In order to measure to what extent current vision-and-language models master this ability, we devise a new multimodal challenge, Image Retrieval from Contextual Descriptions (ImageCoDe). In particular, models are tasked with retrieving the correct image from a set of 10 minimally contrastive candidates based on a contextual description. As such, each description contains only the details that help distinguish between images. Because of this, descriptions tend to be complex in terms of syntax and discourse and require drawing pragmatic inferences. Images are sourced from both static pictures and video frames. We benchmark several state-of-the-art models, including both cross-encoders such as ViLBERT and bi-encoders such as CLIP, on ImageCoDe. Our results reveal that these models dramatically lag behind human performance: the best variant achieves an accuracy of 20.9 on video frames and 59.4 on static pictures, compared with 90.8 in humans. Furthermore, we experiment with new model variants that are better equipped to incorporate visual and temporal context into their representations, which achieve modest gains. Our hope is that ImageCoDE will foster progress in grounded language understanding by encouraging models to focus on fine-grained visual differences.
We have seen a great progress in video action recognition in recent years. There are several models based on convolutional neural network (CNN) and some recent transformer based approaches which … We have seen a great progress in video action recognition in recent years. There are several models based on convolutional neural network (CNN) and some recent transformer based approaches which provide top performance on existing benchmarks. In this work, we perform a large-scale robustness analysis of these existing models for video action recognition. We focus on robustness against real-world distribution shift perturbations instead of adversarial perturbations. We propose four different benchmark datasets, HMDB51-P, UCF101-P, Kinetics400-P, and SSv2-P to perform this analysis. We study robustness of six state-of-the-art action recognition models against 90 different perturbations. The study reveals some interesting findings, 1) transformer based models are consistently more robust compared to CNN based models, 2) Pretraining improves robustness for Transformer based models more than CNN based models, and 3) All of the studied models are robust to temporal perturbations for all datasets but SSv2; suggesting the importance of temporal information for action recognition varies based on the dataset and activities. Next, we study the role of augmentations in model robustness and present a real-world dataset, UCF101-DS, which contains realistic distribution shifts, to further validate some of these findings. We believe this study will serve as a benchmark for future research in robust video action recognition <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> More details available at bit.1y/3TJLMUF..
The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable … The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable and interpretable. Simulations have helped advance the state-of-the-art in this domain, by providing the ability to systematically vary parameters (e.g., confounders) and generate examples of the outcomes in the case of counterfactual scenarios. However, simulating complex temporal causal events in multi-agent scenarios, such as those that exist in driving and vehicle navigation, is challenging. To help address this, we present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning in the safety-critical context. A core component of our work is to introduce \textit{agency}, such that it is simple to define and create complex scenarios using high-level definitions. The vehicles then operate with agency to complete these objectives, meaning low-level behaviors need only be controlled if necessary. We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment. Finally, we highlight challenges and opportunities for future work.
Simulating realistic sensors is a challenging part in data generation for autonomous systems, often involving carefully handcrafted sensor design, scene properties, and physics modeling. To alleviate this, we introduce a … Simulating realistic sensors is a challenging part in data generation for autonomous systems, often involving carefully handcrafted sensor design, scene properties, and physics modeling. To alleviate this, we introduce a pipeline for data-driven simulation of a realistic LiDAR sensor. We propose a model that learns a mapping between RGB images and corresponding LiDAR features such as raydrop or perpoint intensities directly from real datasets. We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces or high intensity returns on reflective materials. When applied to naively raycasted point clouds provided by off-the-shelf simulator software, our model enhances the data by predicting intensities and removing points based on the scene's appearance to match a real LiDAR sensor. We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly. Through a sample task of vehicle segmentation, we show that enhancing simulated point clouds with our technique improves downstream task performance.
3D scene graphs (3DSGs) are an emerging description; unifying symbolic, topological, and metric scene representations. However, typical 3DSGs contain hundreds of objects and symbols even for small environments; rendering task … 3D scene graphs (3DSGs) are an emerging description; unifying symbolic, topological, and metric scene representations. However, typical 3DSGs contain hundreds of objects and symbols even for small environments; rendering task planning on the full graph impractical. We construct TASKOGRAPHY, the first large-scale robotic task planning benchmark over 3DSGs. While most benchmarking efforts in this area focus on vision-based planning, we systematically study symbolic planning, to decouple planning performance from visual representation learning. We observe that, among existing methods, neither classical nor learning-based planners are capable of real-time planning over full 3DSGs. Enabling real-time planning demands progress on both (a) sparsifying 3DSGs for tractable planning and (b) designing planners that better exploit 3DSG hierarchies. Towards the former goal, we propose SCRUB, a task-conditioned 3DSG sparsification method; enabling classical planners to match and in some cases surpass state-of-the-art learning-based planners. Towards the latter goal, we propose SEEK, a procedure enabling learning-based planners to exploit 3DSG structure, reducing the number of replanning queries required by current best approaches by an order of magnitude. We will open-source all code and baselines to spur further research along the intersections of robot task planning, learning and 3DSGs.
A critical object detection task is finetuning an existing model to detect novel objects, but the standard workflow requires bounding box annotations which are time-consuming and expensive to collect. Weakly … A critical object detection task is finetuning an existing model to detect novel objects, but the standard workflow requires bounding box annotations which are time-consuming and expensive to collect. Weakly supervised object detection (WSOD) offers an appealing alternative, where object detectors can be trained using image-level labels. However, the practical application of current WSOD models is limited, as they only operate at small data scales and require multiple rounds of training and refinement. To address this, we propose the Weakly Supervised Detection Transformer, which enables efficient knowledge transfer from a large-scale pretraining dataset to WSOD finetuning on hundreds of novel objects. Additionally, we leverage pretrained knowledge to improve the multiple instance learning (MIL) framework often used in WSOD methods. Our experiments show that our approach outperforms previous state-of-the-art models on large-scale novel object detection datasets, and our scaling study reveals that class quantity is more important than image quantity for WSOD pretraining.
Current text-to-image generation models often struggle to follow textual instructions, especially the ones requiring spatial reasoning. On the other hand, Large Language Models (LLMs), such as GPT-4, have shown remarkable … Current text-to-image generation models often struggle to follow textual instructions, especially the ones requiring spatial reasoning. On the other hand, Large Language Models (LLMs), such as GPT-4, have shown remarkable precision in generating code snippets for sketching out text inputs graphically, e.g., via TikZ. In this work, we introduce Control-GPT to guide the diffusion-based text-to-image pipelines with programmatic sketches generated by GPT-4, enhancing their abilities for instruction following. Control-GPT works by querying GPT-4 to write TikZ code, and the generated sketches are used as references alongside the text instructions for diffusion models (e.g., ControlNet) to generate photo-realistic images. One major challenge to training our pipeline is the lack of a dataset containing aligned text, images, and sketches. We address the issue by converting instance masks in existing datasets into polygons to mimic the sketches used at test time. As a result, Control-GPT greatly boosts the controllability of image generation. It establishes a new state-of-art on the spatial arrangement and object positioning generation and enhances users' control of object positions, sizes, etc., nearly doubling the accuracy of prior models. Our work, as a first attempt, shows the potential for employing LLMs to enhance the performance in computer vision tasks.
Machines are a long way from robustly solving open-world perception-control tasks, such as first-person view (FPV) aerial navigation. While recent advances in end-to-end Machine Learning, especially Imitation and Reinforcement Learning … Machines are a long way from robustly solving open-world perception-control tasks, such as first-person view (FPV) aerial navigation. While recent advances in end-to-end Machine Learning, especially Imitation and Reinforcement Learning appear promising, they are constrained by the need of large amounts of difficult-to-collect labeled real-world data. Simulated data, on the other hand, is easy to generate, but generally does not render safe behaviors in diverse real-life scenarios. In this work we propose a novel method for learning robust visuomotor policies for real-world deployment which can be trained purely with simulated data. We develop rich state representations that combine supervised and unsupervised environment data. Our approach takes a cross-modal perspective, where separate modalities correspond to the raw camera data and the system states relevant to the task, such as the relative pose of gates to the drone in the case of drone racing. We feed both data modalities into a novel factored architecture, which learns a joint low-dimensional embedding via Variational Auto Encoders. This compact representation is then fed into a control policy, which we trained using imitation learning with expert trajectories in a simulator. We analyze the rich latent spaces learned with our proposed representations, and show that the use of our cross-modal architecture significantly improves control policy performance as compared to end-to-end learning or purely unsupervised feature extractors. We also present real-world results for drone navigation through gates in different track configurations and environmental conditions. Our proposed method, which runs fully onboard, can successfully generalize the learned representations and policies across simulation and reality, significantly outperforming baseline approaches. Supplementary video: this https URL
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images. This prior, known as a deep image prior (DIP), is … Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images. This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting. We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we optimize a randomly-initialized CNN model to reconstruct a depth map restored by virtue of using the CNN network structure as a prior combined with a view-constrained photo-consistency loss. This loss is computed using images from a geometrically calibrated camera from nearby viewpoints. We apply this deep depth prior for inpainting and refining incomplete and noisy depth maps within both binocular and multi-view stereo pipelines. Our quantitative and qualitative evaluation shows that our refined depth maps are more accurate and complete, and after fusion, produces dense 3D models of higher quality.
Missingness, or the absence of features from an input, is a concept fundamental to many model debugging tools. However, in computer vision, pixels cannot simply be removed from an image. … Missingness, or the absence of features from an input, is a concept fundamental to many model debugging tools. However, in computer vision, pixels cannot simply be removed from an image. One thus tends to resort to heuristics such as blacking out pixels, which may in turn introduce bias into the debugging process. We study such biases and, in particular, show how transformer-based architectures can enable a more natural implementation of missingness, which side-steps these issues and improves the reliability of model debugging in practice. Our code is available at https://github.com/madrylab/missingness
Being able to reproduce physical phenomena ranging from light interaction to contact mechanics, simulators are becoming increasingly useful in more and more application domains where real-world interaction or labeled data … Being able to reproduce physical phenomena ranging from light interaction to contact mechanics, simulators are becoming increasingly useful in more and more application domains where real-world interaction or labeled data are difficult to obtain. Despite recent progress, significant human effort is needed to configure simulators to accurately reproduce real-world behavior. We introduce a pipeline that combines inverse rendering with differentiable simulation to create digital twins of real-world articulated mechanisms from depth or RGB videos. Our approach automatically discovers joint types and estimates their kinematic parameters, while the dynamic properties of the overall mechanism are tuned to attain physically accurate simulations. Control policies optimized in our derived simulation transfer successfully back to the original system, as we demonstrate on a simulated system. Further, our approach accurately reconstructs the kinematic tree of an articulated mechanism being manipulated by a robot, and highly nonlinear dynamics of a real-world coupled pendulum mechanism. Website: https://eric-heiden.github.io/video2sim
The risk of unauthorized remote access of streaming video from networked cameras underlines the need for stronger privacy safeguards. We propose a lens-free coded aperture camera system for human action … The risk of unauthorized remote access of streaming video from networked cameras underlines the need for stronger privacy safeguards. We propose a lens-free coded aperture camera system for human action recognition that is privacy-preserving. While coded aperture systems exist, we believe ours is the first system designed for action recognition without the need for image restoration as an intermediate step. Action recognition is done using a deep network that takes in as input, non-invertible motion features between pairs of frames computed using phase correlation and log-polar transformation. Phase correlation encodes translation while the log polar transformation encodes in-plane rotation and scaling. We show that the translation features are independent of the coded aperture design, as long as its spectral response within the bandwidth has no zeros. Stacking motion features computed on frames at multiple different strides in the video can improve accuracy. Preliminary results on simulated data based on a subset of the UCF and NTU datasets are promising. We also describe our prototype lens-free coded aperture camera system, and results for real captured videos are mixed.
Acoustic scattering is strongly influenced by boundary geometry of objects over which sound scatters. The present work proposes a method to infer object geometry from scattering features by training convolutional … Acoustic scattering is strongly influenced by boundary geometry of objects over which sound scatters. The present work proposes a method to infer object geometry from scattering features by training convolutional neural networks. The training data is generated from a fast numerical solver developed on CUDA. The complete set of simulations is sampled to generate multiple datasets containing different amounts of channels and diverse image resolutions. The robustness of our approach in response to data degradation is evaluated by comparing the performance of networks trained using the datasets with varying levels of data degradation. The present work has found that the predictions made from our models match ground truth with high accuracy. In addition, accuracy does not degrade when fewer data channels or lower resolutions are used.
We propose a new paradigm to automatically generate training data with accurate labels at scale using the text-toimage synthesis frameworks (e.g., DALL-E, Stable Diffusion, etc.). The proposed approach decouples training … We propose a new paradigm to automatically generate training data with accurate labels at scale using the text-toimage synthesis frameworks (e.g., DALL-E, Stable Diffusion, etc.). The proposed approach decouples training data generation into foreground object mask generation and background (context) image generation. For foreground object mask generation, we use a simple textual template with object class name as input to DALL-E to generate a diverse set of foreground images. A foreground-background segmentation algorithm is then used to generate foreground object masks. Next, in order to generate context images, first a language description of the context is generated by applying an image captioning method on a small set of images representing the context. These language descriptions are then used to generate diverse sets of context images using the DALL-E framework. These are then composited with object masks generated in the first step to provide an augmented training set for a classifier. We demonstrate the advantages of our approach on four object detection datasets including on Pascal VOC and COCO object detection tasks. Furthermore, we also highlight the compositional nature of our data generation approach on out-of-distribution and zero-shot data generation scenarios.
Recent progress in computer vision has been driven by high-capacity models trained on large datasets. Unfortunately, creating large datasets with pixel-level labels has been extremely costly due to the amount … Recent progress in computer vision has been driven by high-capacity models trained on large datasets. Unfortunately, creating large datasets with pixel-level labels has been extremely costly due to the amount of human effort required. In this paper, we present an approach to rapidly creating pixel-accurate semantic label maps for images extracted from modern computer games. Although the source code and the internal operation of commercial games are inaccessible, we show that associations between image patches can be reconstructed from the communication between the game and the graphics hardware. This enables rapid propagation of semantic labels within and across images synthesized by the game, with no access to the source code or the content. We validate the presented approach by producing dense pixel-level semantic annotations for 25 thousand images synthesized by a photorealistic open-world computer game. Experiments on semantic segmentation datasets show that using the acquired data to supplement real-world images significantly increases accuracy and that the acquired data enables reducing the amount of hand-labeled real-world data: models trained with game data and just 1/3 of the CamVid training set outperform models trained on the complete CamVid training set.
We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The … We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The proposed approach has three key ingredients: (1) 3D object models are rendered in 3D models of complete scenes with realistic materials and lighting, (2) plausible geometric configuration of objects and cameras in a scene is generated using physics simulations, and (3) high photorealism of the synthesized images achieved by physically based rendering. When trained on images synthesized by the proposed approach, the Faster R-CNN object detector achieves a 24% absolute improvement of [email protected] on Rutgers APC and 11% on LineMod-Occluded datasets, compared to a baseline where the training images are synthesized by rendering object models on top of random photographs. This work is a step towards being able to effectively train object detectors without capturing or annotating any real images. A dataset of 600K synthetic images with ground truth annotations for various computer vision tasks will be released on the project website: this http URL.
Joint visual and language modeling on large-scale datasets has recently shown good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations … Joint visual and language modeling on large-scale datasets has recently shown good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations has not been studied. In this work, we perform the first extensive robustness study of video-language models against various real-world perturbations. We focus on text-to-video retrieval and propose two large-scale benchmark datasets, MSRVTT-P and YouCook2-P, which utilize 90 different visual and 35 different text perturbations. The study reveals some interesting initial findings from the studied models: 1) models are generally more susceptible when only video is perturbed as opposed to when only text is perturbed, 2) models that are pre-trained are more robust than those trained from scratch, 3) models attend more to scene and objects rather than motion and action. We hope this study will serve as a benchmark and guide future research in robust video-language learning. The benchmark introduced in this study along with the code and datasets is available at https://bit.ly/3CNOly4.
We propose EM-PASTE: an Expectation Maximization(EM) guided Cut-Paste compositional dataset augmentation approach for weakly-supervised instance segmentation using only image-level supervision. The proposed method consists of three main components. The first … We propose EM-PASTE: an Expectation Maximization(EM) guided Cut-Paste compositional dataset augmentation approach for weakly-supervised instance segmentation using only image-level supervision. The proposed method consists of three main components. The first component generates high-quality foreground object masks. To this end, an EM-like approach is proposed that iteratively refines an initial set of object mask proposals generated by a generic region proposal method. Next, in the second component, high-quality context-aware background images are generated using a text-to-image compositional synthesis method like DALL-E. Finally, the third component creates a large-scale pseudo-labeled instance segmentation training dataset by compositing the foreground object masks onto the original and generated background images. The proposed approach achieves state-of-the-art weakly-supervised instance segmentation results on both the PASCAL VOC 2012 and MS COCO datasets by using only image-level, weak label information. In particular, it outperforms the best baseline by +7.4 and +2.8 mAP0.50 on PASCAL and COCO, respectively. Further, the method provides a new solution to the long-tail weakly-supervised instance segmentation problem (when many classes may only have few training samples), by selectively augmenting under-represented classes.
Self-supervised learning is an effective way for label-free model pre-training, especially in the video domain where labeling is expensive. Existing self-supervised works in the video domain use varying experimental setups … Self-supervised learning is an effective way for label-free model pre-training, especially in the video domain where labeling is expensive. Existing self-supervised works in the video domain use varying experimental setups to demonstrate their effectiveness and comparison across approaches becomes challenging with no standard benchmark. In this work, we first provide a benchmark that enables a comparison of existing approaches on the same ground. Next, we study five different aspects of self-supervised learning important for videos; 1) dataset size, 2) complexity, 3) data distribution, 4) data noise, and, 5)feature analysis. To facilitate this study, we focus on seven different methods along with seven different network architectures and perform an extensive set of experiments on 5 different datasets with an evaluation of two different downstream tasks. We present several interesting insights from this study which span across different properties of pretraining and target datasets, pretext-tasks, and model architectures among others. We further put some of these insights to the real test and propose an approach that requires a limited amount of training data and outperforms existing state-of-the-art approaches which use 10x pretraining data. We believe this work will pave the way for researchers to a better understanding of self-supervised pretext tasks in video representation learning.
We propose a new paradigm to automatically generate training data with accurate labels at scale using the text-to-image synthesis frameworks (e.g., DALL-E, Stable Diffusion, etc.). The proposed approach1 decouples training … We propose a new paradigm to automatically generate training data with accurate labels at scale using the text-to-image synthesis frameworks (e.g., DALL-E, Stable Diffusion, etc.). The proposed approach1 decouples training data generation into foreground object generation, and contextually coherent background generation. To generate foreground objects, we employ a straightforward textual template, incorporating the object class name as input prompts. This is fed into a text-to-image synthesis framework, producing various foreground images set against isolated backgrounds. A foreground-background segmentation algorithm is then used to generate foreground object masks. To generate context images, we begin by creating language descriptions of the context. This is achieved by applying an image captioning method to a small set of images representing the desired context. These textual descriptions are then transformed into a diverse array of context images via a text-to-image synthesis framework. Subsequently, we composite these with the foreground object masks produced in the initial step, utilizing a cut-and-paste method, to formulate the training data. We demonstrate the advantages of our approach on five object detection and segmentation datasets, including Pascal VOC and COCO. We found that detectors trained solely on synthetic data produced by our method achieve performance comparable to those trained on real data (Fig. 1). Moreover, a combination of real and synthetic data yields even much better results. Further analysis indicates that the synthetic data distribution complements the real data distribution effectively. Additionally, we emphasize the compositional nature of our data generation approach in out-of-distribution and zero-shot data generation scenarios. We open-source our code at https://github.com/gyhandy/Text2Image-for-Detection
A recent trend in deep learning algorithms has been towards training large scale models, having high parameter count and trained on big dataset. However, robustness of such large scale models … A recent trend in deep learning algorithms has been towards training large scale models, having high parameter count and trained on big dataset. However, robustness of such large scale models towards real-world settings is still a less-explored topic. In this work, we first benchmark the performance of these models under different perturbations and datasets thereby representing real-world shifts, and highlight their degrading performance under these shifts. We then discuss on how complete model fine-tuning based existing robustification schemes might not be a scalable option given very large scale networks and can also lead them to forget some of the desired characterstics. Finally, we propose a simple and cost-effective method to solve this problem, inspired by knowledge transfer literature. It involves robustifying smaller models, at a lower computation cost, and then use them as teachers to tune a fraction of these large scale networks, reducing the overall computational overhead. We evaluate our proposed method under various vision perturbations including ImageNet-C,R,S,A datasets and also for transfer learning, zero-shot evaluation setups on different datasets. Benchmark results show that our method is able to induce robustness to these large scale models efficiently, requiring significantly lower time and also preserves the transfer learning, zero-shot properties of the original model which none of the existing methods are able to achieve.
Although 3D Convolutional Neural Networks (CNNs) are essential for most learning based applications involving dense 3D data, their applicability is limited due to excessive memory and computational requirements. Compressing such … Although 3D Convolutional Neural Networks (CNNs) are essential for most learning based applications involving dense 3D data, their applicability is limited due to excessive memory and computational requirements. Compressing such networks by pruning therefore becomes highly desirable. However, pruning 3D CNNs is largely unexplored possibly because of the complex nature of typical pruning algorithms that embeds pruning into an iterative optimization paradigm. In this work, we introduce a Resource Aware Neuron Pruning (RANP) algorithm that prunes 3D CNNs at initialization to high sparsity levels. Specifically, the core idea is to obtain an importance score for each neuron based on their sensitivity to the loss function. This neuron importance is then reweighted according to the neuron resource consumption related to FLOPs or memory. We demonstrate the effectiveness of our pruning method on 3D semantic segmentation with widely used 3D-UNets on ShapeNet and BraTS'18 as well as on video classification with MobileNetV2 and I3D on UCF101 dataset. In these experiments, our RANP leads to roughly 50%-95% reduction in FLOPs and 35%-80% reduction in memory with negligible loss in accuracy compared to the unpruned networks. This significantly reduces the computational resources required to train 3D CNNs. The pruned network obtained by our algorithm can also be easily scaled up and transferred to another dataset for training.
A large number of problems in computer vision can be modelled as energy minimization problems in a Markov Random Field (MRF) or Conditional Random Field (CRF) framework. Graph-cuts based $\alpha$-expansion … A large number of problems in computer vision can be modelled as energy minimization problems in a Markov Random Field (MRF) or Conditional Random Field (CRF) framework. Graph-cuts based $\alpha$-expansion is a standard move-making method to minimize the energy functions with sub-modular pairwise terms. However, certain problems require more complex pairwise terms where the $\alpha$-expansion method is generally not applicable. In this paper, we propose an iterative {\em tiered move making algorithm} which is able to handle general pairwise terms. Each move to the next configuration is based on the current labeling and an optimal tiered move, where each tiered move requires one application of the dynamic programming based tiered labeling method introduced in Felzenszwalb et. al. \cite{tiered_cvpr_felzenszwalbV10}. The algorithm converges to a local minimum for any general pairwise potential, and we give a theoretical analysis of the properties of the algorithm, characterizing the situations in which we can expect good performance. We first evaluate our method on an object-class segmentation problem using the Pascal VOC-11 segmentation dataset where we learn general pairwise terms. Further we evaluate the algorithm on many other benchmark labeling problems such as stereo, image segmentation, image stitching and image denoising. Our method consistently gets better accuracy and energy values than alpha-expansion, loopy belief propagation (LBP), quadratic pseudo-boolean optimization (QPBO), and is competitive with TRWS.
Simulation is increasingly being used for generating large labelled datasets in many machine learning problems. Recent methods have focused on adjusting simulator parameters with the goal of maximising accuracy on … Simulation is increasingly being used for generating large labelled datasets in many machine learning problems. Recent methods have focused on adjusting simulator parameters with the goal of maximising accuracy on a validation task, usually relying on REINFORCE-like gradient estimators. However these approaches are very expensive as they treat the entire data generation, model training, and validation pipeline as a black-box and require multiple costly objective evaluations at each iteration. We propose an efficient alternative for optimal synthetic data generation, based on a novel differentiable approximation of the objective. This allows us to optimize the simulator, which may be non-differentiable, requiring only one objective evaluation at each iteration with a little overhead. We demonstrate on a state-of-the-art photorealistic renderer that the proposed method finds the optimal data distribution faster (up to $50\times$), with significantly reduced training data generation (up to $30\times$) and better accuracy ($+8.7\%$) on real-world test datasets than previous methods.
Acoustic scattering is strongly influenced by boundary geometry of objects over which sound scatters. The present work proposes a method to infer object geometry from scattering features by training convolutional … Acoustic scattering is strongly influenced by boundary geometry of objects over which sound scatters. The present work proposes a method to infer object geometry from scattering features by training convolutional neural networks. The training data is generated from a fast numerical solver developed on CUDA. The complete set of simulations is sampled to generate multiple datasets containing different amounts of channels and diverse image resolutions. The robustness of our approach in response to data degradation is evaluated by comparing the performance of networks trained using the datasets with varying levels of data degradation. The present work has found that the predictions made from our models match ground truth with high accuracy. In addition, accuracy does not degrade when fewer data channels or lower resolutions are used.
The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable … The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable and interpretable. Simulations have helped advance the state-of-the-art in this domain, by providing the ability to systematically vary parameters (e.g., confounders) and generate examples of the outcomes in the case of counterfactual scenarios. However, simulating complex temporal causal events in multi-agent scenarios, such as those that exist in driving and vehicle navigation, is challenging. To help address this, we present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning in the safety-critical context. A core component of our work is to introduce \textit{agency}, such that it is simple to define and create complex scenarios using high-level definitions. The vehicles then operate with agency to complete these objectives, meaning low-level behaviors need only be controlled if necessary. We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment. Finally, we highlight challenges and opportunities for future work.
The current literature on self-supervised learning (SSL) focuses on developing learning objectives to train neural networks more effectively on unlabeled data. The typical development process involves taking well-established architectures, e.g., … The current literature on self-supervised learning (SSL) focuses on developing learning objectives to train neural networks more effectively on unlabeled data. The typical development process involves taking well-established architectures, e.g., ResNet demonstrated on ImageNet, and using them to evaluate newly developed objectives on downstream scenarios. While convenient, this does not take into account the role of architectures which has been shown to be crucial in the supervised learning literature. In this work, we establish extensive empirical evidence showing that a network architecture plays a significant role in SSL. We conduct a large-scale study with over 100 variants of ResNet and MobileNet architectures and evaluate them across 11 downstream scenarios in the SSL setting. We show that there is no one network that performs consistently well across the scenarios. Based on this, we propose to learn not only network weights but also architecture topologies in the SSL regime. We show that "self-supervised architectures" outperform popular handcrafted architectures (ResNet18 and MobileNetV2) while performing competitively with the larger and computationally heavy ResNet50 on major image classification benchmarks (ImageNet-1K, iNat2021, and more). Our results suggest that it is time to consider moving beyond handcrafted architectures in SSL and start thinking about incorporating architecture search into self-supervised learning objectives.
Standard 3D reconstruction pipelines assume stationary world, therefore suffer from `ghost artifacts' whenever dynamic objects are present in the scene. Recent approaches has started tackling this issue, however, they typically … Standard 3D reconstruction pipelines assume stationary world, therefore suffer from `ghost artifacts' whenever dynamic objects are present in the scene. Recent approaches has started tackling this issue, however, they typically either only discard dynamic information, represent it using bounding boxes or per-frame depth or rely on approaches that are inherently slow and not suitable to online settings. We propose an end-to-end system for live reconstruction of large-scale outdoor dynamic environments. We leverage recent advances in computationally efficient data-driven approaches for 6-DoF object pose estimation to segment the scene into objects and stationary `background'. This allows us to represent the scene using a time-dependent (dynamic) map, in which each object is explicitly represented as a separate instance and reconstructed in its own volume. For each time step, our dynamic map maintains a relative pose of each volume with respect to the stationary background. Our system operates in incremental manner which is essential for on-line reconstruction, handles large-scale environments with objects at large distances and runs in (near) real-time. We demonstrate the efficacy of our approach on the KITTI dataset, and provide qualitative and quantitative results showing high-quality dense 3D reconstructions of a number of dynamic scenes.
We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The … We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The proposed approach has three key ingredients: (1) 3D object models are rendered in 3D models of complete scenes with realistic materials and lighting, (2) plausible geometric configuration of objects and cameras in a scene is generated using physics simulations, and (3) high photorealism of the synthesized images achieved by physically based rendering. When trained on images synthesized by the proposed approach, the Faster R-CNN object detector achieves a 24% absolute improvement of [email protected] on Rutgers APC and 11% on LineMod-Occluded datasets, compared to a baseline where the training images are synthesized by rendering object models on top of random photographs. This work is a step towards being able to effectively train object detectors without capturing or annotating any real images. A dataset of 600K synthetic images with ground truth annotations for various computer vision tasks will be released on the project website: thodan.github.io/objectsynth.
A large number of problems in computer vision can be modelled as energy minimization problems in a Markov Random Field (MRF) or Conditional Random Field (CRF) framework. Graph-cuts based $\alpha$-expansion … A large number of problems in computer vision can be modelled as energy minimization problems in a Markov Random Field (MRF) or Conditional Random Field (CRF) framework. Graph-cuts based $\alpha$-expansion is a standard move-making method to minimize the energy functions with sub-modular pairwise terms. However, certain problems require more complex pairwise terms where the $\alpha$-expansion method is generally not applicable. In this paper, we propose an iterative {\em tiered move making algorithm} which is able to handle general pairwise terms. Each move to the next configuration is based on the current labeling and an optimal tiered move, where each tiered move requires one application of the dynamic programming based tiered labeling method introduced in Felzenszwalb et. al. \cite{tiered_cvpr_felzenszwalbV10}. The algorithm converges to a local minimum for any general pairwise potential, and we give a theoretical analysis of the properties of the algorithm, characterizing the situations in which we can expect good performance. We first evaluate our method on an object-class segmentation problem using the Pascal VOC-11 segmentation dataset where we learn general pairwise terms. Further we evaluate the algorithm on many other benchmark labeling problems such as stereo, image segmentation, image stitching and image denoising. Our method consistently gets better accuracy and energy values than alpha-expansion, loopy belief propagation (LBP), quadratic pseudo-boolean optimization (QPBO), and is competitive with TRWS.
We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to … We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to discover vulnerabilities in computer vision systems and gain insights into how models make decisions. 3DB captures and generalizes many robustness analyses from prior work, and enables one to study their interplay. Finally, we find that the insights generated by the system transfer to the physical world. We are releasing 3DB as a library (https://github.com/3db/3db) alongside a set of example analyses, guides, and documentation: https://3db.github.io/3db/ .
Image completion is a task that aims to fill in the missing region of a masked image with plausible contents. However, existing image completion methods tend to fill in the … Image completion is a task that aims to fill in the missing region of a masked image with plausible contents. However, existing image completion methods tend to fill in the missing region with the surrounding texture instead of hallucinating a visual instance that is suitable in accordance with the context of the scene. In this work, we propose a novel image completion model, dubbed ImComplete, that hallucinates the missing instance that harmonizes well with - and thus preserves - the original context. ImComplete first adopts a transformer architecture that considers the visible instances and the location of the missing region. Then, ImComplete completes the semantic segmentation masks within the missing region, providing pixel-level semantic and structural guidance. Finally, the image synthesis blocks generate photo-realistic content. We perform a comprehensive evaluation of the results in terms of visual quality (LPIPS and FID) and contextual preservation scores (CLIPscore and object detection accuracy) with COCO-panoptic and Visual Genome datasets. Experimental results show the superiority of ImComplete on various natural images.
Vision-language models (VLMs) are highly effective but often underperform on specialized tasks; for example, Llava-1.5 struggles with chart and diagram understanding due to scarce task-specific training data. Existing training data, … Vision-language models (VLMs) are highly effective but often underperform on specialized tasks; for example, Llava-1.5 struggles with chart and diagram understanding due to scarce task-specific training data. Existing training data, sourced from general-purpose datasets, fails to capture the nuanced details needed for these tasks. We introduce MM-Gen, a scalable method that generates task-specific, high-quality synthetic text for candidate images by leveraging stronger models. MM-Gen employs a three-stage targeted process: partitioning data into subgroups, generating targeted text based on task descriptions, and filtering out redundant and outlier data. Fine-tuning VLMs with data generated by MM-Gen leads to significant performance gains, including 29% on spatial reasoning and 15% on diagram understanding for Llava-1.5 (7B). Compared to human-curated caption data, MM-Gen achieves up to 1.6x better improvements for the original models, proving its effectiveness in enhancing task-specific VLM performance and bridging the gap between general-purpose datasets and specialized requirements. Code available at https://github.com/sjoshi804/MM-Gen.
This paper explores the impact of occlusions in video action detection. We facilitate this study by introducing five new benchmark datasets namely O-UCF and O-JHMDB consisting of synthetically controlled static/dynamic … This paper explores the impact of occlusions in video action detection. We facilitate this study by introducing five new benchmark datasets namely O-UCF and O-JHMDB consisting of synthetically controlled static/dynamic occlusions, OVIS-UCF and OVIS-JHMDB consisting of occlusions with realistic motions and Real-OUCF for occlusions in realistic-world scenarios. We formally confirm an intuitive expectation: existing models suffer a lot as occlusion severity is increased and exhibit different behaviours when occluders are static vs when they are moving. We discover several intriguing phenomenon emerging in neural nets: 1) transformers can naturally outperform CNN models which might have even used occlusion as a form of data augmentation during training 2) incorporating symbolic-components like capsules to such backbones allows them to bind to occluders never even seen during training and 3) Islands of agreement can emerge in realistic images/videos without instance-level supervision, distillation or contrastive-based objectives2(eg. video-textual training). Such emergent properties allow us to derive simple yet effective training recipes which lead to robust occlusion models inductively satisfying the first two stages of the binding mechanism (grouping/segregation). Models leveraging these recipes outperform existing video action-detectors under occlusion by 32.3% on O-UCF, 32.7% on O-JHMDB & 2.6% on Real-OUCF in terms of the vMAP metric. The code for this work has been released at https://github.com/rajatmodi62/OccludedActionBenchmark.
With models getting stronger, evaluations have grown more complex, testing multiple skills in one benchmark and even in the same instance at once. However, skill-wise performance is obscured when inspecting … With models getting stronger, evaluations have grown more complex, testing multiple skills in one benchmark and even in the same instance at once. However, skill-wise performance is obscured when inspecting aggregate accuracy, under-utilizing the rich signal modern benchmarks contain. We propose an automatic approach to recover the underlying skills relevant for any evaluation instance, by way of inspecting model-generated rationales. After validating the relevance of rationale-parsed skills and inferring skills for $46$k instances over $12$ benchmarks, we observe many skills to be common across benchmarks, resulting in the curation of hundreds of skill-slices (i.e. sets of instances testing a common skill). Inspecting accuracy over these slices yields novel insights on model trade-offs: e.g., compared to GPT-4o and Claude 3.5 Sonnet, on average, Gemini 1.5 Pro is $18\%$ more accurate in "computing molar mass", but $19\%$ less accurate in "applying constitutional law", despite the overall accuracies of the three models differing by a mere $0.4\%$. Furthermore, we demonstrate the practical utility of our approach by showing that insights derived from skill slice analysis can generalize to held-out instances: when routing each instance to the model strongest on the relevant skills, we see a $3\%$ accuracy improvement over our $12$ dataset corpus. Our skill-slices and framework open a new avenue in model evaluation, leveraging skill-specific analyses to unlock a more granular and actionable understanding of model capabilities.
Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, … Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.
Geometric understanding is crucial for navigating and interacting with our environment. While large Vision Language Models (VLMs) demonstrate impressive capabilities, deploying them in real-world scenarios necessitates a comparable geometric understanding … Geometric understanding is crucial for navigating and interacting with our environment. While large Vision Language Models (VLMs) demonstrate impressive capabilities, deploying them in real-world scenarios necessitates a comparable geometric understanding in visual perception. In this work, we focus on the geometric comprehension of these models; specifically targeting the depths and heights of objects within a scene. Our observations reveal that, although VLMs excel in basic geometric properties perception such as shape and size, they encounter significant challenges in reasoning about the depth and height of objects. To address this, we introduce GeoMeter, a suite of benchmark datasets encompassing Synthetic 2D, Synthetic 3D, and Real-World scenarios to rigorously evaluate these aspects. We benchmark 17 state-of-the-art VLMs using these datasets and find that they consistently struggle with both depth and height perception. Our key insights include detailed analyses of the shortcomings in depth and height reasoning capabilities of VLMs and the inherent bias present in these models. This study aims to pave the way for the development of VLMs with enhanced geometric understanding, crucial for real-world applications.
Large language models (LLMs) and vision-language models (VLMs) have demonstrated remarkable performance across a wide range of tasks and domains. Despite this promise, spatial understanding and reasoning -- a fundamental … Large language models (LLMs) and vision-language models (VLMs) have demonstrated remarkable performance across a wide range of tasks and domains. Despite this promise, spatial understanding and reasoning -- a fundamental component of human cognition -- remains under-explored. We develop novel benchmarks that cover diverse aspects of spatial reasoning such as relationship understanding, navigation, and counting. We conduct a comprehensive evaluation of competitive language and vision-language models. Our findings reveal several counter-intuitive insights that have been overlooked in the literature: (1) Spatial reasoning poses significant challenges where competitive models can fall behind random guessing; (2) Despite additional visual input, VLMs often under-perform compared to their LLM counterparts; (3) When both textual and visual information is available, multi-modal language models become less reliant on visual information if sufficient textual clues are provided. Additionally, we demonstrate that leveraging redundancy between vision and text can significantly enhance model performance. We hope our study will inform the development of multimodal models to improve spatial intelligence and further close the gap with human intelligence.
In this work we present a novel task of understanding unintentional human activities in videos. We formalize this problem as a reasoning task under zero-shot scenario, where given a video … In this work we present a novel task of understanding unintentional human activities in videos. We formalize this problem as a reasoning task under zero-shot scenario, where given a video of an unintentional activity we want to know why it transitioned from intentional to unintentional. We first evaluate the effectiveness of current state-of-the-art Large Multimodal Models on this reasoning task and observe that they suffer from hallucination. We further propose a novel prompting technique,termed as Dream of Thoughts (DoT), which allows the model to navigate through hallucinated thoughts to achieve better reasoning. To evaluate the performance on this task, we also introduce three different specialized metrics designed to quantify the models reasoning capability. We perform our experiments on two different datasets, OOPs and UCF-Crimes, and our findings show that DOT prompting technique is able to outperform standard prompting, while minimizing hallucinations.
A recent trend in deep learning algorithms has been towards training large scale models, having high parameter count and trained on big dataset. However, robustness of such large scale models … A recent trend in deep learning algorithms has been towards training large scale models, having high parameter count and trained on big dataset. However, robustness of such large scale models towards real-world settings is still a less-explored topic. In this work, we first benchmark the performance of these models under different perturbations and datasets thereby representing real-world shifts, and highlight their degrading performance under these shifts. We then discuss on how complete model fine-tuning based existing robustification schemes might not be a scalable option given very large scale networks and can also lead them to forget some of the desired characterstics. Finally, we propose a simple and cost-effective method to solve this problem, inspired by knowledge transfer literature. It involves robustifying smaller models, at a lower computation cost, and then use them as teachers to tune a fraction of these large scale networks, reducing the overall computational overhead. We evaluate our proposed method under various vision perturbations including ImageNet-C,R,S,A datasets and also for transfer learning, zero-shot evaluation setups on different datasets. Benchmark results show that our method is able to induce robustness to these large scale models efficiently, requiring significantly lower time and also preserves the transfer learning, zero-shot properties of the original model which none of the existing methods are able to achieve.
We have seen a great progress in video action recognition in recent years. There are several models based on convolutional neural network (CNN) and some recent transformer based approaches which … We have seen a great progress in video action recognition in recent years. There are several models based on convolutional neural network (CNN) and some recent transformer based approaches which provide top performance on existing benchmarks. In this work, we perform a large-scale robustness analysis of these existing models for video action recognition. We focus on robustness against real-world distribution shift perturbations instead of adversarial perturbations. We propose four different benchmark datasets, HMDB51-P, UCF101-P, Kinetics400-P, and SSv2-P to perform this analysis. We study robustness of six state-of-the-art action recognition models against 90 different perturbations. The study reveals some interesting findings, 1) transformer based models are consistently more robust compared to CNN based models, 2) Pretraining improves robustness for Transformer based models more than CNN based models, and 3) All of the studied models are robust to temporal perturbations for all datasets but SSv2; suggesting the importance of temporal information for action recognition varies based on the dataset and activities. Next, we study the role of augmentations in model robustness and present a real-world dataset, UCF101-DS, which contains realistic distribution shifts, to further validate some of these findings. We believe this study will serve as a benchmark for future research in robust video action recognition <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> More details available at bit.1y/3TJLMUF..
A critical object detection task is finetuning an existing model to detect novel objects, but the standard workflow requires bounding box annotations which are time-consuming and expensive to collect. Weakly … A critical object detection task is finetuning an existing model to detect novel objects, but the standard workflow requires bounding box annotations which are time-consuming and expensive to collect. Weakly supervised object detection (WSOD) offers an appealing alternative, where object detectors can be trained using image-level labels. However, the practical application of current WSOD models is limited, as they only operate at small data scales and require multiple rounds of training and refinement. To address this, we propose the Weakly Supervised Detection Transformer, which enables efficient knowledge transfer from a large-scale pretraining dataset to WSOD finetuning on hundreds of novel objects. Additionally, we leverage pretrained knowledge to improve the multiple instance learning (MIL) framework often used in WSOD methods. Our experiments show that our approach outperforms previous state-of-the-art models on large-scale novel object detection datasets, and our scaling study reveals that class quantity is more important than image quantity for WSOD pretraining.
A rich representation is key to general robotic manipulation, but existing approaches to representation learning require large amounts of multimodal demonstrations. In this work we propose PLEX, a transformer-based architecture … A rich representation is key to general robotic manipulation, but existing approaches to representation learning require large amounts of multimodal demonstrations. In this work we propose PLEX, a transformer-based architecture that learns from a small amount of task-agnostic visuomotor trajectories and a much larger amount of task-conditioned object manipulation videos -- a type of data available in quantity. PLEX uses visuomotor trajectories to induce a latent feature space and to learn task-agnostic manipulation routines, while diverse video-only demonstrations teach PLEX how to plan in the induced latent feature space for a wide variety of tasks. Experiments showcase PLEX's generalization on Meta-World and SOTA performance in challenging Robosuite environments. In particular, using relative positional encoding in PLEX's transformers greatly helps in low-data regimes of learning from human-collected demonstrations. The paper's accompanying code and data are available at https://microsoft.github.io/PLEX.
Current text-to-image generation models often struggle to follow textual instructions, especially the ones requiring spatial reasoning. On the other hand, Large Language Models (LLMs), such as GPT-4, have shown remarkable … Current text-to-image generation models often struggle to follow textual instructions, especially the ones requiring spatial reasoning. On the other hand, Large Language Models (LLMs), such as GPT-4, have shown remarkable precision in generating code snippets for sketching out text inputs graphically, e.g., via TikZ. In this work, we introduce Control-GPT to guide the diffusion-based text-to-image pipelines with programmatic sketches generated by GPT-4, enhancing their abilities for instruction following. Control-GPT works by querying GPT-4 to write TikZ code, and the generated sketches are used as references alongside the text instructions for diffusion models (e.g., ControlNet) to generate photo-realistic images. One major challenge to training our pipeline is the lack of a dataset containing aligned text, images, and sketches. We address the issue by converting instance masks in existing datasets into polygons to mimic the sketches used at test time. As a result, Control-GPT greatly boosts the controllability of image generation. It establishes a new state-of-art on the spatial arrangement and object positioning generation and enhances users' control of object positions, sizes, etc., nearly doubling the accuracy of prior models. Our work, as a first attempt, shows the potential for employing LLMs to enhance the performance in computer vision tasks.
Self-supervised learning is an effective way for label-free model pre-training, especially in the video domain where labeling is expensive. Existing self-supervised works in the video domain use varying experimental setups … Self-supervised learning is an effective way for label-free model pre-training, especially in the video domain where labeling is expensive. Existing self-supervised works in the video domain use varying experimental setups to demonstrate their effectiveness and comparison across approaches becomes challenging with no standard benchmark. In this work, we first provide a benchmark that enables a comparison of existing approaches on the same ground. Next, we study five different aspects of self-supervised learning important for videos; 1) dataset size, 2) complexity, 3) data distribution, 4) data noise, and, 5)feature analysis. To facilitate this study, we focus on seven different methods along with seven different network architectures and perform an extensive set of experiments on 5 different datasets with an evaluation of two different downstream tasks. We present several interesting insights from this study which span across different properties of pretraining and target datasets, pretext-tasks, and model architectures among others. We further put some of these insights to the real test and propose an approach that requires a limited amount of training data and outperforms existing state-of-the-art approaches which use 10x pretraining data. We believe this work will pave the way for researchers to a better understanding of self-supervised pretext tasks in video representation learning.
Due to the increase in computational resources and accessibility of data, an increase in large, deep learning models trained on copious amounts of data using self-supervised or semi-supervised learning have … Due to the increase in computational resources and accessibility of data, an increase in large, deep learning models trained on copious amounts of data using self-supervised or semi-supervised learning have emerged. These "foundation" models are often adapted to a variety of downstream tasks like classification, object detection, and segmentation with little-to-no training on the target dataset. In this work, we perform a robustness analysis of Visual Foundation Models (VFMs) for segmentation tasks and compare them to supervised models of smaller scale. We focus on robustness against real-world distribution shift perturbations.We benchmark four state-of-the-art segmentation architectures using 2 different datasets, COCO and ADE20K, with 17 different perturbations with 5 severity levels each. We find interesting insights that include (1) VFMs are not robust to compression-based corruptions, (2) while the selected VFMs do not significantly outperform or exhibit more robustness compared to non-VFM models, they remain competitively robust in zero-shot evaluations, particularly when non-VFM are under supervision and (3) selected VFMs demonstrate greater resilience to specific categories of objects, likely due to their open-vocabulary training paradigm, a feature that non-VFM models typically lack. We posit that the suggested robustness evaluation introduces new requirements for foundational models, thus sparking further research to enhance their performance.
We propose a new paradigm to automatically generate training data with accurate labels at scale using the text-to-image synthesis frameworks (e.g., DALL-E, Stable Diffusion, etc.). The proposed approach1 decouples training … We propose a new paradigm to automatically generate training data with accurate labels at scale using the text-to-image synthesis frameworks (e.g., DALL-E, Stable Diffusion, etc.). The proposed approach1 decouples training data generation into foreground object generation, and contextually coherent background generation. To generate foreground objects, we employ a straightforward textual template, incorporating the object class name as input prompts. This is fed into a text-to-image synthesis framework, producing various foreground images set against isolated backgrounds. A foreground-background segmentation algorithm is then used to generate foreground object masks. To generate context images, we begin by creating language descriptions of the context. This is achieved by applying an image captioning method to a small set of images representing the desired context. These textual descriptions are then transformed into a diverse array of context images via a text-to-image synthesis framework. Subsequently, we composite these with the foreground object masks produced in the initial step, utilizing a cut-and-paste method, to formulate the training data. We demonstrate the advantages of our approach on five object detection and segmentation datasets, including Pascal VOC and COCO. We found that detectors trained solely on synthetic data produced by our method achieve performance comparable to those trained on real data (Fig. 1). Moreover, a combination of real and synthetic data yields even much better results. Further analysis indicates that the synthetic data distribution complements the real data distribution effectively. Additionally, we emphasize the compositional nature of our data generation approach in out-of-distribution and zero-shot data generation scenarios. We open-source our code at https://github.com/gyhandy/Text2Image-for-Detection
A recent trend in deep learning algorithms has been towards training large scale models, having high parameter count and trained on big dataset. However, robustness of such large scale models … A recent trend in deep learning algorithms has been towards training large scale models, having high parameter count and trained on big dataset. However, robustness of such large scale models towards real-world settings is still a less-explored topic. In this work, we first benchmark the performance of these models under different perturbations and datasets thereby representing real-world shifts, and highlight their degrading performance under these shifts. We then discuss on how complete model fine-tuning based existing robustification schemes might not be a scalable option given very large scale networks and can also lead them to forget some of the desired characterstics. Finally, we propose a simple and cost-effective method to solve this problem, inspired by knowledge transfer literature. It involves robustifying smaller models, at a lower computation cost, and then use them as teachers to tune a fraction of these large scale networks, reducing the overall computational overhead. We evaluate our proposed method under various vision perturbations including ImageNet-C,R,S,A datasets and also for transfer learning, zero-shot evaluation setups on different datasets. Benchmark results show that our method is able to induce robustness to these large scale models efficiently, requiring significantly lower time and also preserves the transfer learning, zero-shot properties of the original model which none of the existing methods are able to achieve.
Construction of a universal detector poses a crucial question: How can we most effectively train a model on a large mixture of datasets? The answer lies in learning dataset-specific features … Construction of a universal detector poses a crucial question: How can we most effectively train a model on a large mixture of datasets? The answer lies in learning dataset-specific features and ensembling their knowledge but do all this in a single model. Previous methods achieve this by having separate detection heads on a common backbone but that results in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose Dataset-Aware Mixture-of-Experts, DAMEX where we train the experts to become an `expert' of a dataset by learning to route each dataset tokens to its mapped expert. Experiments on Universal Object-Detection Benchmark show that we outperform the existing state-of-the-art by average +10.2 AP score and improve over our non-MoE baseline by average +2.0 AP score. We also observe consistent gains while mixing datasets with (1) limited availability, (2) disparate domains and (3) divergent label sets. Further, we qualitatively show that DAMEX is robust against expert representation collapse.
Recently there has been a lot of progress in text-to-video generation, with state-of-the-art models being capable of generating high quality, realistic videos. However, these models lack the capability for users … Recently there has been a lot of progress in text-to-video generation, with state-of-the-art models being capable of generating high quality, realistic videos. However, these models lack the capability for users to interactively control and generate videos, which can potentially unlock new areas of application. As a first step towards this goal, we tackle the problem of endowing diffusion-based video generation models with interactive spatio-temporal control over their output. To this end, we take inspiration from the recent advances in segmentation literature to propose a novel spatio-temporal masked attention module - Peekaboo. This module is a training-free, no-inference-overhead addition to off-the-shelf video generation models which enables spatio-temporal control. We also propose an evaluation benchmark for the interactive video generation task. Through extensive qualitative and quantitative evaluation, we establish that Peekaboo enables control video generation and even obtains a gain of upto 3.8x in mIoU over baseline models.
The popularization of Text-to-Image (T2I) diffusion models enables the generation of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses … The popularization of Text-to-Image (T2I) diffusion models enables the generation of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting commonalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distribution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions. We also show the adaptability of the learned prompt distribution to other tasks, such as text-to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including automatic evaluation and human assessment. Project website: https://briannlongzhao.github.io/DreamDistribution
Being able to reproduce physical phenomena ranging from light interaction to contact mechanics, simulators are becoming increasingly useful in more and more application domains where real-world interaction or labeled data … Being able to reproduce physical phenomena ranging from light interaction to contact mechanics, simulators are becoming increasingly useful in more and more application domains where real-world interaction or labeled data are difficult to obtain. Despite recent progress, significant human effort is needed to configure simulators to accurately reproduce real-world behavior. We introduce a pipeline that combines inverse rendering with differentiable simulation to create digital twins of real-world articulated mechanisms from depth or RGB videos. Our approach automatically discovers joint types and estimates their kinematic parameters, while the dynamic properties of the overall mechanism are tuned to attain physically accurate simulations. Control policies optimized in our derived simulation transfer successfully back to the original system, as we demonstrate on a simulated system. Further, our approach accurately reconstructs the kinematic tree of an articulated mechanism being manipulated by a robot, and highly nonlinear dynamics of a real-world coupled pendulum mechanism. Website: https://eric-heiden.github.io/video2sim
Simulating realistic sensors is a challenging part in data generation for autonomous systems, often involving carefully handcrafted sensor design, scene properties, and physics modeling. To alleviate this, we introduce a … Simulating realistic sensors is a challenging part in data generation for autonomous systems, often involving carefully handcrafted sensor design, scene properties, and physics modeling. To alleviate this, we introduce a pipeline for data-driven simulation of a realistic LiDAR sensor. We propose a model that learns a mapping between RGB images and corresponding LiDAR features such as raydrop or perpoint intensities directly from real datasets. We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces or high intensity returns on reflective materials. When applied to naively raycasted point clouds provided by off-the-shelf simulator software, our model enhances the data by predicting intensities and removing points based on the scene's appearance to match a real LiDAR sensor. We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly. Through a sample task of vehicle segmentation, we show that enhancing simulated point clouds with our technique improves downstream task performance.
Joint visual and language modeling on large-scale datasets has recently shown a good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world … Joint visual and language modeling on large-scale datasets has recently shown a good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations has not been studied. In this work, we perform the first extensive robustness study of such models against various real-world perturbations focusing on video and language. We focus on text-to-video retrieval and propose two large-scale benchmark datasets, MSRVTT-P and YouCook2-P, which utilize 90 different visual and 35 different textual perturbations. The study reveals some interesting findings: 1) The studied models are more robust when text is perturbed versus when video is perturbed 2) The transformer text encoder is more robust on non-semantic changing text perturbations and visual perturbations compared to word embedding approaches. 3) Using two-branch encoders in isolation is typically more robust than when architectures use cross-attention. We hope this study will serve as a benchmark and guide future research in robust multimodal learning.
Contrastive learning relies on an assumption that positive pairs contain related views that share certain underlying information about an instance, e.g., patches of an image or co-occurring multimodal signals of … Contrastive learning relies on an assumption that positive pairs contain related views that share certain underlying information about an instance, e.g., patches of an image or co-occurring multimodal signals of a video. What if this assumption is violated? The literature suggests that contrastive learning produces suboptimal representations in the presence of noisy views, e.g., false positive pairs with no apparent shared information. In this work, we pro-pose a new contrastive loss function that is robust against noisy views. We provide rigorous theoretical justifications by showing connections to robust symmetric losses for noisy binary classification and by establishing a new contrastive bound for mutual information maximization based on the Wasserstein distance measure. The proposed loss is completely modality-agnostic and a simple drop-in replacement for the InfoNCE loss, which makes it easy to apply to ex-isting contrastive frameworks. We show that our approach provides consistent improvements over the state-of-the-art on image, video, and graph contrastive learning bench-marks that exhibit a variety of real-world noise patterns.
State-of-the-art methods for self-supervised sequential action alignment rely on deep networks that find correspondences across videos in time. They either learn frame-to-frame mapping across sequences, which does not leverage temporal … State-of-the-art methods for self-supervised sequential action alignment rely on deep networks that find correspondences across videos in time. They either learn frame-to-frame mapping across sequences, which does not leverage temporal information, or assume monotonic alignment between each video pair, which ignores variations in the order of actions. As such, these methods are not able to deal with common real-world scenarios that involve background frames or videos that contain non-monotonic sequence of actions. In this paper, we propose an approach to align sequential actions in the wild that involve diverse temporal variations. To this end, we propose an approach to enforce temporal priors on the optimal transport matrix, which leverages temporal consistency, while allowing for variations in the order of actions. Our model accounts for both monotonic and non-monotonic sequences and handles background frames that should not be aligned. We demonstrate that our approach consistently outperforms the state-of-the-art in self-supervised sequential action representation learning on four different benchmark datasets. Code is publicly available at https://github.com/weizheliu/VAVA.
Missingness, or the absence of features from an input, is a concept fundamental to many model debugging tools. However, in computer vision, pixels cannot simply be removed from an image. … Missingness, or the absence of features from an input, is a concept fundamental to many model debugging tools. However, in computer vision, pixels cannot simply be removed from an image. One thus tends to resort to heuristics such as blacking out pixels, which may in turn introduce bias into the debugging process. We study such biases and, in particular, show how transformer-based architectures can enable a more natural implementation of missingness, which side-steps these issues and improves the reliability of model debugging in practice. Our code is available at https://github.com/madrylab/missingness
The ability to integrate context, including perceptual and temporal cues, plays a pivotal role in grounding the meaning of a linguistic utterance. In order to measure to what extent current … The ability to integrate context, including perceptual and temporal cues, plays a pivotal role in grounding the meaning of a linguistic utterance. In order to measure to what extent current vision-and-language models master this ability, we devise a new multimodal challenge, Image Retrieval from Contextual Descriptions (ImageCoDe). In particular, models are tasked with retrieving the correct image from a set of 10 minimally contrastive candidates based on a contextual description. As such, each description contains only the details that help distinguish between images. Because of this, descriptions tend to be complex in terms of syntax and discourse and require drawing pragmatic inferences. Images are sourced from both static pictures and video frames. We benchmark several state-of-the-art models, including both cross-encoders such as ViLBERT and bi-encoders such as CLIP, on ImageCoDe. Our results reveal that these models dramatically lag behind human performance: the best variant achieves an accuracy of 20.9 on video frames and 59.4 on static pictures, compared with 90.8 in humans. Furthermore, we experiment with new model variants that are better equipped to incorporate visual and temporal context into their representations, which achieve modest gains. Our hope is that ImageCoDE will foster progress in grounded language understanding by encouraging models to focus on fine-grained visual differences.
The current literature on self-supervised learning (SSL) focuses on developing learning objectives to train neural networks more effectively on unlabeled data. The typical development process involves taking well-established architectures, e.g., … The current literature on self-supervised learning (SSL) focuses on developing learning objectives to train neural networks more effectively on unlabeled data. The typical development process involves taking well-established architectures, e.g., ResNet demonstrated on ImageNet, and using them to evaluate newly developed objectives on downstream scenarios. While convenient, this does not take into account the role of architectures which has been shown to be crucial in the supervised learning literature. In this work, we establish extensive empirical evidence showing that a network architecture plays a significant role in SSL. We conduct a large-scale study with over 100 variants of ResNet and MobileNet architectures and evaluate them across 11 downstream scenarios in the SSL setting. We show that there is no one network that performs consistently well across the scenarios. Based on this, we propose to learn not only network weights but also architecture topologies in the SSL regime. We show that "self-supervised architectures" outperform popular handcrafted architectures (ResNet18 and MobileNetV2) while performing competitively with the larger and computationally heavy ResNet50 on major image classification benchmarks (ImageNet-1K, iNat2021, and more). Our results suggest that it is time to consider moving beyond handcrafted architectures in SSL and start thinking about incorporating architecture search into self-supervised learning objectives.
Being able to reproduce physical phenomena ranging from light interaction to contact mechanics, simulators are becoming increasingly useful in more and more application domains where real-world interaction or labeled data … Being able to reproduce physical phenomena ranging from light interaction to contact mechanics, simulators are becoming increasingly useful in more and more application domains where real-world interaction or labeled data are difficult to obtain. Despite recent progress, significant human effort is needed to configure simulators to accurately reproduce real-world behavior. We introduce a pipeline that combines inverse rendering with differentiable simulation to create digital twins of real-world articulated mechanisms from depth or RGB videos. Our approach automatically discovers joint types and estimates their kinematic parameters, while the dynamic properties of the overall mechanism are tuned to attain physically accurate simulations. Control policies optimized in our derived simulation transfer successfully back to the original system, as we demonstrate on a simulated system. Further, our approach accurately reconstructs the kinematic tree of an articulated mechanism being manipulated by a robot, and highly nonlinear dynamics of a real-world coupled pendulum mechanism. Website: https://eric-heiden.github.io/video2sim
Contrastive learning relies on an assumption that positive pairs contain related views, e.g., patches of an image or co-occurring multimodal signals of a video, that share certain underlying information about … Contrastive learning relies on an assumption that positive pairs contain related views, e.g., patches of an image or co-occurring multimodal signals of a video, that share certain underlying information about an instance. But what if this assumption is violated? The literature suggests that contrastive learning produces suboptimal representations in the presence of noisy views, e.g., false positive pairs with no apparent shared information. In this work, we propose a new contrastive loss function that is robust against noisy views. We provide rigorous theoretical justifications by showing connections to robust symmetric losses for noisy binary classification and by establishing a new contrastive bound for mutual information maximization based on the Wasserstein distance measure. The proposed loss is completely modality-agnostic and a simple drop-in replacement for the InfoNCE loss, which makes it easy to apply to existing contrastive frameworks. We show that our approach provides consistent improvements over the state-of-the-art on image, video, and graph contrastive learning benchmarks that exhibit a variety of real-world noise patterns.
We propose a new paradigm to automatically generate training data with accurate labels at scale using the text-toimage synthesis frameworks (e.g., DALL-E, Stable Diffusion, etc.). The proposed approach decouples training … We propose a new paradigm to automatically generate training data with accurate labels at scale using the text-toimage synthesis frameworks (e.g., DALL-E, Stable Diffusion, etc.). The proposed approach decouples training data generation into foreground object mask generation and background (context) image generation. For foreground object mask generation, we use a simple textual template with object class name as input to DALL-E to generate a diverse set of foreground images. A foreground-background segmentation algorithm is then used to generate foreground object masks. Next, in order to generate context images, first a language description of the context is generated by applying an image captioning method on a small set of images representing the context. These language descriptions are then used to generate diverse sets of context images using the DALL-E framework. These are then composited with object masks generated in the first step to provide an augmented training set for a classifier. We demonstrate the advantages of our approach on four object detection datasets including on Pascal VOC and COCO object detection tasks. Furthermore, we also highlight the compositional nature of our data generation approach on out-of-distribution and zero-shot data generation scenarios.
We have seen a great progress in video action recognition in recent years. There are several models based on convolutional neural network (CNN) and some recent transformer based approaches which … We have seen a great progress in video action recognition in recent years. There are several models based on convolutional neural network (CNN) and some recent transformer based approaches which provide top performance on existing benchmarks. In this work, we perform a large-scale robustness analysis of these existing models for video action recognition. We focus on robustness against real-world distribution shift perturbations instead of adversarial perturbations. We propose four different benchmark datasets, HMDB51-P, UCF101-P, Kinetics400-P, and SSv2-P to perform this analysis. We study robustness of six state-of-the-art action recognition models against 90 different perturbations. The study reveals some interesting findings, 1) transformer based models are consistently more robust compared to CNN based models, 2) Pretraining improves robustness for Transformer based models more than CNN based models, and 3) All of the studied models are robust to temporal perturbations for all datasets but SSv2; suggesting the importance of temporal information for action recognition varies based on the dataset and activities. Next, we study the role of augmentations in model robustness and present a real-world dataset, UCF101-DS, which contains realistic distribution shifts, to further validate some of these findings. We believe this study will serve as a benchmark for future research in robust video action recognition.
3D scene graphs (3DSGs) are an emerging description; unifying symbolic, topological, and metric scene representations. However, typical 3DSGs contain hundreds of objects and symbols even for small environments; rendering task … 3D scene graphs (3DSGs) are an emerging description; unifying symbolic, topological, and metric scene representations. However, typical 3DSGs contain hundreds of objects and symbols even for small environments; rendering task planning on the full graph impractical. We construct TASKOGRAPHY, the first large-scale robotic task planning benchmark over 3DSGs. While most benchmarking efforts in this area focus on vision-based planning, we systematically study symbolic planning, to decouple planning performance from visual representation learning. We observe that, among existing methods, neither classical nor learning-based planners are capable of real-time planning over full 3DSGs. Enabling real-time planning demands progress on both (a) sparsifying 3DSGs for tractable planning and (b) designing planners that better exploit 3DSG hierarchies. Towards the former goal, we propose SCRUB, a task-conditioned 3DSG sparsification method; enabling classical planners to match and in some cases surpass state-of-the-art learning-based planners. Towards the latter goal, we propose SEEK, a procedure enabling learning-based planners to exploit 3DSG structure, reducing the number of replanning queries required by current best approaches by an order of magnitude. We will open-source all code and baselines to spur further research along the intersections of robot task planning, learning and 3DSGs.
The ability to integrate context, including perceptual and temporal cues, plays a pivotal role in grounding the meaning of a linguistic utterance. In order to measure to what extent current … The ability to integrate context, including perceptual and temporal cues, plays a pivotal role in grounding the meaning of a linguistic utterance. In order to measure to what extent current vision-and-language models master this ability, we devise a new multimodal challenge, Image Retrieval from Contextual Descriptions (ImageCoDe). In particular, models are tasked with retrieving the correct image from a set of 10 minimally contrastive candidates based on a contextual description. As such, each description contains only the details that help distinguish between images. Because of this, descriptions tend to be complex in terms of syntax and discourse and require drawing pragmatic inferences. Images are sourced from both static pictures and video frames. We benchmark several state-of-the-art models, including both cross-encoders such as ViLBERT and bi-encoders such as CLIP, on ImageCoDe. Our results reveal that these models dramatically lag behind human performance: the best variant achieves an accuracy of 20.9 on video frames and 59.4 on static pictures, compared with 90.8 in humans. Furthermore, we experiment with new model variants that are better equipped to incorporate visual and temporal context into their representations, which achieve modest gains. Our hope is that ImageCoDE will foster progress in grounded language understanding by encouraging models to focus on fine-grained visual differences.
A critical object detection task is finetuning an existing model to detect novel objects, but the standard workflow requires bounding box annotations which are time-consuming and expensive to collect. Weakly … A critical object detection task is finetuning an existing model to detect novel objects, but the standard workflow requires bounding box annotations which are time-consuming and expensive to collect. Weakly supervised object detection (WSOD) offers an appealing alternative, where object detectors can be trained using image-level labels. However, the practical application of current WSOD models is limited, as they only operate at small data scales and require multiple rounds of training and refinement. To address this, we propose the Weakly Supervised Detection Transformer, which enables efficient knowledge transfer from a large-scale pretraining dataset to WSOD finetuning on hundreds of novel objects. Additionally, we leverage pretrained knowledge to improve the multiple instance learning (MIL) framework often used in WSOD methods. Our experiments show that our approach outperforms previous state-of-the-art models on large-scale novel object detection datasets, and our scaling study reveals that class quantity is more important than image quantity for WSOD pretraining. The code is available at https://github.com/tmlabonte/weakly-supervised-DETR.
Training computer vision models usually requires collecting and labeling vast amounts of imagery under a diverse set of scene configurations and properties. This process is incredibly time-consuming, and it is … Training computer vision models usually requires collecting and labeling vast amounts of imagery under a diverse set of scene configurations and properties. This process is incredibly time-consuming, and it is challenging to ensure that the captured data distribution maps well to the target domain of an application scenario. Recently, synthetic data has emerged as a way to address both of these issues. However, existing approaches either require human experts to manually tune each scene property or use automatic methods that provide little to no control; this requires rendering large amounts of random data variations, which is slow and is often suboptimal for the target domain. We present the first fully differentiable synthetic data pipeline that uses Neural Radiance Fields (NeRFs) in a closed-loop with a target application's loss function. Our approach generates data on-demand, with no human labor, to maximize accuracy for a target task. We illustrate the effectiveness of our method on synthetic and real-world object detection tasks. We also introduce a new "YCB-in-the-Wild" dataset and benchmark that provides a test scenario for object detection with varied poses in real-world environments.
Simulating realistic sensors is a challenging part in data generation for autonomous systems, often involving carefully handcrafted sensor design, scene properties, and physics modeling. To alleviate this, we introduce a … Simulating realistic sensors is a challenging part in data generation for autonomous systems, often involving carefully handcrafted sensor design, scene properties, and physics modeling. To alleviate this, we introduce a pipeline for data-driven simulation of a realistic LiDAR sensor. We propose a model that learns a mapping between RGB images and corresponding LiDAR features such as raydrop or per-point intensities directly from real datasets. We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces or high intensity returns on reflective materials. When applied to naively raycasted point clouds provided by off-the-shelf simulator software, our model enhances the data by predicting intensities and removing points based on the scene's appearance to match a real LiDAR sensor. We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly. Through a sample task of vehicle segmentation, we show that enhancing simulated point clouds with our technique improves downstream task performance.
Joint visual and language modeling on large-scale datasets has recently shown good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations … Joint visual and language modeling on large-scale datasets has recently shown good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations has not been studied. In this work, we perform the first extensive robustness study of video-language models against various real-world perturbations. We focus on text-to-video retrieval and propose two large-scale benchmark datasets, MSRVTT-P and YouCook2-P, which utilize 90 different visual and 35 different text perturbations. The study reveals some interesting initial findings from the studied models: 1) models are generally more susceptible when only video is perturbed as opposed to when only text is perturbed, 2) models that are pre-trained are more robust than those trained from scratch, 3) models attend more to scene and objects rather than motion and action. We hope this study will serve as a benchmark and guide future research in robust video-language learning. The benchmark introduced in this study along with the code and datasets is available at https://bit.ly/3CNOly4.
Image completion is a task that aims to fill in the missing region of a masked image with plausible contents. However, existing image completion methods tend to fill in the … Image completion is a task that aims to fill in the missing region of a masked image with plausible contents. However, existing image completion methods tend to fill in the missing region with the surrounding texture instead of hallucinating a visual instance that is suitable in accordance with the context of the scene. In this work, we propose a novel image completion model, dubbed ImComplete, that hallucinates the missing instance that harmonizes well with - and thus preserves - the original context. ImComplete first adopts a transformer architecture that considers the visible instances and the location of the missing region. Then, ImComplete completes the semantic segmentation masks within the missing region, providing pixel-level semantic and structural guidance. Finally, the image synthesis blocks generate photo-realistic content. We perform a comprehensive evaluation of the results in terms of visual quality (LPIPS and FID) and contextual preservation scores (CLIPscore and object detection accuracy) with COCO-panoptic and Visual Genome datasets. Experimental results show the superiority of ImComplete on various natural images.
We propose EM-PASTE: an Expectation Maximization(EM) guided Cut-Paste compositional dataset augmentation approach for weakly-supervised instance segmentation using only image-level supervision. The proposed method consists of three main components. The first … We propose EM-PASTE: an Expectation Maximization(EM) guided Cut-Paste compositional dataset augmentation approach for weakly-supervised instance segmentation using only image-level supervision. The proposed method consists of three main components. The first component generates high-quality foreground object masks. To this end, an EM-like approach is proposed that iteratively refines an initial set of object mask proposals generated by a generic region proposal method. Next, in the second component, high-quality context-aware background images are generated using a text-to-image compositional synthesis method like DALL-E. Finally, the third component creates a large-scale pseudo-labeled instance segmentation training dataset by compositing the foreground object masks onto the original and generated background images. The proposed approach achieves state-of-the-art weakly-supervised instance segmentation results on both the PASCAL VOC 2012 and MS COCO datasets by using only image-level, weak label information. In particular, it outperforms the best baseline by +7.4 and +2.8 mAP0.50 on PASCAL and COCO, respectively. Further, the method provides a new solution to the long-tail weakly-supervised instance segmentation problem (when many classes may only have few training samples), by selectively augmenting under-represented classes.
Spatial understanding is a fundamental aspect of computer vision and integral for human-level reasoning about images, making it an important component for grounded language understanding. While recent text-to-image synthesis (T2I) … Spatial understanding is a fundamental aspect of computer vision and integral for human-level reasoning about images, making it an important component for grounded language understanding. While recent text-to-image synthesis (T2I) models have shown unprecedented improvements in photorealism, it is unclear whether they have reliable spatial understanding capabilities. We investigate the ability of T2I models to generate correct spatial relationships among objects and present VISOR, an evaluation metric that captures how accurately the spatial relationship described in text is generated in the image. To benchmark existing models, we introduce a dataset, $\mathrm{SR}_{2D}$, that contains sentences describing two or more objects and the spatial relationships between them. We construct an automated evaluation pipeline to recognize objects and their spatial relationships, and employ it in a large-scale evaluation of T2I models. Our experiments reveal a surprising finding that, although state-of-the-art T2I models exhibit high image quality, they are severely limited in their ability to generate multiple objects or the specified spatial relations between them. Our analyses demonstrate several biases and artifacts of T2I models such as the difficulty with generating multiple objects, a bias towards generating the first object mentioned, spatially inconsistent outputs for equivalent relationships, and a correlation between object co-occurrence and spatial understanding capabilities. We conduct a human study that shows the alignment between VISOR and human judgement about spatial understanding. We offer the $\mathrm{SR}_{2D}$ dataset and the VISOR metric to the community in support of T2I reasoning research.
State-of-the-art methods for self-supervised sequential action alignment rely on deep networks that find correspondences across videos in time. They either learn frame-to-frame mapping across sequences, which does not leverage temporal … State-of-the-art methods for self-supervised sequential action alignment rely on deep networks that find correspondences across videos in time. They either learn frame-to-frame mapping across sequences, which does not leverage temporal information, or assume monotonic alignment between each video pair, which ignores variations in the order of actions. As such, these methods are not able to deal with common real-world scenarios that involve background frames or videos that contain non-monotonic sequence of actions. In this paper, we propose an approach to align sequential actions in the wild that involve diverse temporal variations. To this end, we propose an approach to enforce temporal priors on the optimal transport matrix, which leverages temporal consistency, while allowing for variations in the order of actions. Our model accounts for both monotonic and non-monotonic sequences and handles background frames that should not be aligned. We demonstrate that our approach consistently outperforms the state-of-the-art in self-supervised sequential action representation learning on four different benchmark datasets.
The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable … The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable and interpretable. Simulations have helped advance the state-of-the-art in this domain, by providing the ability to systematically vary parameters (e.g., confounders) and generate examples of the outcomes in the case of counterfactual scenarios. However, simulating complex temporal causal events in multi-agent scenarios, such as those that exist in driving and vehicle navigation, is challenging. To help address this, we present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning in the safety-critical context. A core component of our work is to introduce \textit{agency}, such that it is simple to define and create complex scenarios using high-level definitions. The vehicles then operate with agency to complete these objectives, meaning low-level behaviors need only be controlled if necessary. We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment. Finally, we highlight challenges and opportunities for future work.
We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to … We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to discover vulnerabilities in computer vision systems and gain insights into how models make decisions. 3DB captures and generalizes many robustness analyses from prior work, and enables one to study their interplay. Finally, we find that the insights generated by the system transfer to the physical world. We are releasing 3DB as a library (this https URL) alongside a set of example analyses, guides, and documentation: this https URL .
Acoustic scattering is strongly influenced by boundary geometry of objects over which sound scatters. The present work proposes a method to infer object geometry from scattering features by training convolutional … Acoustic scattering is strongly influenced by boundary geometry of objects over which sound scatters. The present work proposes a method to infer object geometry from scattering features by training convolutional neural networks. The training data is generated from a fast numerical solver developed on CUDA. The complete set of simulations is sampled to generate multiple datasets containing different amounts of channels and diverse image resolutions. The robustness of our approach in response to data degradation is evaluated by comparing the performance of networks trained using the datasets with varying levels of data degradation. The present work has found that the predictions made from our models match ground truth with high accuracy. In addition, accuracy does not degrade when fewer data channels or lower resolutions are used.
Although 3D Convolutional Neural Networks are essential for most learning based applications involving dense 3D data, their applicability is limited due to excessive memory and computational requirements. Compressing such networks … Although 3D Convolutional Neural Networks are essential for most learning based applications involving dense 3D data, their applicability is limited due to excessive memory and computational requirements. Compressing such networks by pruning therefore becomes highly desirable. However, pruning 3D CNNs is largely unexplored possibly because of the complex nature of typical pruning algorithms that embeds pruning into an iterative optimization paradigm. In this work, we introduce a Resource Aware Neuron Pruning (RANP) algorithm that prunes 3D CNNs at initialization to high sparsity levels. Specifically, the core idea is to obtain an importance score for each neuron based on their sensitivity to the loss function. This neuron importance is then reweighted according to the neuron resource consumption related to FLOPs or memory. We demonstrate the effectiveness of our pruning method on 3D semantic segmentation with widely used 3D-UNets on ShapeNet and BraTS'18 datasets, video classification with MobileNetV2 and I3D on UCF101 dataset, and two-view stereo matching with Pyramid Stereo Matching (PSM) network on SceneFlow dataset. In these experiments, our RANP leads to roughly 50%-95% reduction in FLOPs and 35%-80% reduction in memory with negligible loss in accuracy compared to the unpruned networks. This significantly reduces the computational resources required to train 3D CNNs. The pruned network obtained by our algorithm can also be easily scaled up and transferred to another dataset for training.
State-of-the-art methods for self-supervised sequential action alignment rely on deep networks that find correspondences across videos in time. They either learn frame-to-frame mapping across sequences, which does not leverage temporal … State-of-the-art methods for self-supervised sequential action alignment rely on deep networks that find correspondences across videos in time. They either learn frame-to-frame mapping across sequences, which does not leverage temporal information, or assume monotonic alignment between each video pair, which ignores variations in the order of actions. As such, these methods are not able to deal with common real-world scenarios that involve background frames or videos that contain non-monotonic sequence of actions. In this paper, we propose an approach to align sequential actions in the wild that involve diverse temporal variations. To this end, we propose an approach to enforce temporal priors on the optimal transport matrix, which leverages temporal consistency, while allowing for variations in the order of actions. Our model accounts for both monotonic and non-monotonic sequences and handles background frames that should not be aligned. We demonstrate that our approach consistently outperforms the state-of-the-art in self-supervised sequential action representation learning on four different benchmark datasets.
The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable … The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable and interpretable. Simulations have helped advance the state-of-the-art in this domain, by providing the ability to systematically vary parameters (e.g., confounders) and generate examples of the outcomes in the case of counterfactual scenarios. However, simulating complex temporal causal events in multi-agent scenarios, such as those that exist in driving and vehicle navigation, is challenging. To help address this, we present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning in the safety-critical context. A core component of our work is to introduce \textit{agency}, such that it is simple to define and create complex scenarios using high-level definitions. The vehicles then operate with agency to complete these objectives, meaning low-level behaviors need only be controlled if necessary. We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment. Finally, we highlight challenges and opportunities for future work.
We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to … We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to discover vulnerabilities in computer vision systems and gain insights into how models make decisions. 3DB captures and generalizes many robustness analyses from prior work, and enables one to study their interplay. Finally, we find that the insights generated by the system transfer to the physical world. We are releasing 3DB as a library (https://github.com/3db/3db) alongside a set of example analyses, guides, and documentation: https://3db.github.io/3db/ .
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images. This prior, known as a deep image prior (DIP), is … Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images. This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting. We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we optimize a randomly-initialized CNN model to reconstruct a depth map restored by virtue of using the CNN network structure as a prior combined with a view-constrained photo-consistency loss. This loss is computed using images from a geometrically calibrated camera from nearby viewpoints. We apply this deep depth prior for inpainting and refining incomplete and noisy depth maps within both binocular and multi-view stereo pipelines. Our quantitative and qualitative evaluation shows that our refined depth maps are more accurate and complete, and after fusion, produces dense 3D models of higher quality.
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly … Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
Most state-of-the-art techniques for multi-class image segmentation and labeling use conditional random fields defined over pixels or image regions. While region-level models often feature dense pairwise connectivity, pixel-level models are … Most state-of-the-art techniques for multi-class image segmentation and labeling use conditional random fields defined over pixels or image regions. While region-level models often feature dense pairwise connectivity, pixel-level models are considerably larger and have only permitted sparse graph structures. In this paper, we consider fully connected CRF models defined on the complete set of pixels in an image. The resulting graphs have billions of edges, making traditional inference algorithms impractical. Our main contribution is a highly efficient approximate inference algorithm for fully connected CRF models in which the pairwise edge potentials are defined by a linear combination of Gaussian kernels. Our experiments demonstrate that dense connectivity at the pixel level substantially improves segmentation and labeling accuracy.
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, … State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network(RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
We introduce UCF101 which is currently the largest dataset of human actions. It consists of 101 action classes, over 13k clips and 27 hours of video data. The database consists … We introduce UCF101 which is currently the largest dataset of human actions. It consists of 101 action classes, over 13k clips and 27 hours of video data. The database consists of realistic user uploaded videos containing camera motion and cluttered background. Additionally, we provide baseline action recognition results on this new dataset using standard bag of words approach with overall performance of 44.5%. To the best of our knowledge, UCF101 is currently the most challenging dataset of actions due to its large number of classes, large number of clips and also unconstrained nature of such clips.
We propose a simple, yet effective approach for spatiotemporal feature learning using deep 3-dimensional convolutional networks (3D ConvNets) trained on a large scale supervised video dataset. Our findings are three-fold: … We propose a simple, yet effective approach for spatiotemporal feature learning using deep 3-dimensional convolutional networks (3D ConvNets) trained on a large scale supervised video dataset. Our findings are three-fold: 1) 3D ConvNets are more suitable for spatiotemporal feature learning compared to 2D ConvNets, 2) A homogeneous architecture with small 3x3x3 convolution kernels in all layers is among the best performing architectures for 3D ConvNets, and 3) Our learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks. In addition, the features are compact: achieving 52.8% accuracy on UCF101 dataset with only 10 dimensions and also very efficient to compute due to the fast inference of ConvNets. Finally, they are conceptually very simple and easy to train and use.
A key requirement for leveraging supervised deep learning methods is the availability of large, labeled datasets. Unfortunately, in the context of RGB-D scene understanding, very little data is available - … A key requirement for leveraging supervised deep learning methods is the availability of large, labeled datasets. Unfortunately, in the context of RGB-D scene understanding, very little data is available - current datasets cover a small range of scene views and have limited semantic annotations. To address this issue, we introduce ScanNet, an RGB-D video dataset containing 2.5M views in 1513 scenes annotated with 3D camera poses, surface reconstructions, and semantic segmentations. To collect this data, we designed an easy-to-use and scalable RGB-D capture system that includes automated surface reconstruction and crowd-sourced semantic annotation.We show that using this data helps achieve state-of-the-art performance on several 3D scene understanding tasks, including 3D object classification, semantic voxel labeling, and CAD model retrieval.
Semantic image segmentation is an essential component of modern autonomous driving systems, as an accurate understanding of the surrounding scene is crucial to navigation and action planning. Current state-of-the-art approaches … Semantic image segmentation is an essential component of modern autonomous driving systems, as an accurate understanding of the surrounding scene is crucial to navigation and action planning. Current state-of-the-art approaches in semantic image segmentation rely on pre-trained networks that were initially developed for classifying images as a whole. While these networks exhibit outstanding recognition performance (i.e., what is visible?), they lack localization accuracy (i.e., where precisely is something located?). Therefore, additional processing steps have to be performed in order to obtain pixel-accurate segmentation masks at the full image resolution. To alleviate this problem we propose a novel ResNet-like architecture that exhibits strong localization and recognition performance. We combine multi-scale context with pixel-level accuracy by using two processing streams within our network: One stream carries information at the full image resolution, enabling precise adherence to segment boundaries. The other stream undergoes a sequence of pooling operations to obtain robust features for recognition. The two streams are coupled at the full image resolution using residuals. Without additional processing steps and without pre-training, our approach achieves an intersection-over-union score of 71.8% on the Cityscapes dataset.
The paucity of videos in current action classification datasets (UCF-101 and HMDB-51) has made it difficult to identify good video architectures, as most methods obtain similar performance on existing small-scale … The paucity of videos in current action classification datasets (UCF-101 and HMDB-51) has made it difficult to identify good video architectures, as most methods obtain similar performance on existing small-scale benchmarks. This paper re-evaluates state-of-the-art architectures in light of the new Kinetics Human Action Video dataset. Kinetics has two orders of magnitude more data, with 400 human action classes and over 400 clips per class, and is collected from realistic, challenging YouTube videos. We provide an analysis on how current architectures fare on the task of action classification on this dataset and how much performance improves on the smaller benchmark datasets after pre-training on Kinetics. We also introduce a new Two-Stream Inflated 3D ConvNet (I3D) that is based on 2D ConvNet inflation: filters and pooling kernels of very deep image classification ConvNets are expanded into 3D, making it possible to learn seamless spatio-temporal feature extractors from video while leveraging successful ImageNet architecture designs and even their parameters. We show that, after pre-training on Kinetics, I3D models considerably improve upon the state-of-the-art in action classification, reaching 80.2% on HMDB-51 and 97.9% on UCF-101.
Training models to high-end performance requires availability of large labeled datasets, which are expensive to get. The goal of our work is to automatically synthesize labeled datasets that are relevant … Training models to high-end performance requires availability of large labeled datasets, which are expensive to get. The goal of our work is to automatically synthesize labeled datasets that are relevant for a downstream task. We propose Meta-Sim, which learns a generative model of synthetic scenes, and obtain images as well as its corresponding ground-truth via a graphics engine. We parametrize our dataset generator with a neural network, which learns to modify attributes of scene graphs obtained from probabilistic scene grammars, so as to minimize the distribution gap between its rendered outputs and target data. If the real dataset comes with a small labeled validation set, we additionally aim to optimize a meta-objective, i.e. downstream task performance. Experiments show that the proposed method can greatly improve content generation quality over a human-engineered probabilistic scene grammar, both qualitatively and quantitatively as measured by performance on a downstream task.
In this paper we discuss several forms of spatiotemporal convolutions for video analysis and study their effects on action recognition. Our motivation stems from the observation that 2D CNNs applied … In this paper we discuss several forms of spatiotemporal convolutions for video analysis and study their effects on action recognition. Our motivation stems from the observation that 2D CNNs applied to individual frames of the video have remained solid performers in action recognition. In this work we empirically demonstrate the accuracy advantages of 3D CNNs over 2D CNNs within the framework of residual learning. Furthermore, we show that factorizing the 3D convolutional filters into separate spatial and temporal components yields significantly gains in accuracy. Our empirical study leads to the design of a new spatiotemporal convolutional block "R(2+1)D" which produces CNNs that achieve results comparable or superior to the state-of-the-art on Sports-1M, Kinetics, UCF101, and HMDB51.
We investigate architectures of discriminatively trained deep Convolutional Networks (ConvNets) for action recognition in video. The challenge is to capture the complementary information on appearance from still frames and motion … We investigate architectures of discriminatively trained deep Convolutional Networks (ConvNets) for action recognition in video. The challenge is to capture the complementary information on appearance from still frames and motion between frames. We also aim to generalise the best performing hand-crafted features within a data-driven learning framework. Our contribution is three-fold. First, we propose a two-stream ConvNet architecture which incorporates spatial and temporal networks. Second, we demonstrate that a ConvNet trained on multi-frame dense optical flow is able to achieve very good performance in spite of limited training data. Finally, we show that multi-task learning, applied to two different action classification datasets, can be used to increase the amount of training data and improve the performance on both. Our architecture is trained and evaluated on the standard video actions benchmarks of UCF-101 and HMDB-51, where it is competitive with the state of the art. It also exceeds by a large margin previous attempts to use deep nets for video classification.
Indoor scene understanding is central to applications such as robot navigation and human companion assistance. Over the last years, data-driven deep neural networks have outperformed many traditional approaches thanks to … Indoor scene understanding is central to applications such as robot navigation and human companion assistance. Over the last years, data-driven deep neural networks have outperformed many traditional approaches thanks to their representation learning capabilities. One of the bottlenecks in training for better representations is the amount of available per-pixel ground truth data that is required for core scene understanding tasks such as semantic segmentation, normal prediction, and object boundary detection. To address this problem, a number of works proposed using synthetic data. However, a systematic study of how such synthetic data is generated is missing. In this work, we introduce a large-scale synthetic dataset with 500K physically-based rendered images from 45K realistic 3D indoor scenes. We study the effects of rendering methods and scene lighting on training for three computer vision tasks: surface normal prediction, semantic segmentation, and object boundary detection. This study provides insights into the best practices for training with synthetic data (more realistic rendering is worth it) and shows that pretraining with our new synthetic dataset can improve results beyond the current state of the art on all three tasks.
Convolutional neural networks (CNNs) have recently been very successful in a variety of computer vision tasks, especially on those linked to recognition. Optical flow estimation has not been among the … Convolutional neural networks (CNNs) have recently been very successful in a variety of computer vision tasks, especially on those linked to recognition. Optical flow estimation has not been among the tasks CNNs succeeded at. In this paper we construct CNNs which are capable of solving the optical flow estimation problem as a supervised learning task. We propose and compare two architectures: a generic architecture and another one including a layer that correlates feature vectors at different image locations. Since existing ground truth data sets are not sufficiently large to train a CNN, we generate a large synthetic Flying Chairs dataset. We show that networks trained on this unrealistic data still generalize very well to existing datasets such as Sintel and KITTI, achieving competitive accuracy at frame rates of 5 to 10 fps.
A major impediment in rapidly deploying object detection models for instance detection is the lack of large annotated datasets. For example, finding a large labeled dataset containing instances in a … A major impediment in rapidly deploying object detection models for instance detection is the lack of large annotated datasets. For example, finding a large labeled dataset containing instances in a particular kitchen is unlikely. Each new environment with new instances requires expensive data collection and annotation. In this paper, we propose a simple approach to generate large annotated instance datasets with minimal effort. Our key insight is that ensuring only patch-level realism provides enough training signal for current object detector models. We automatically `cut' object instances and `paste' them on random backgrounds. A naive way to do this results in pixel artifacts which result in poor performance for trained models. We show how to make detectors ignore these artifacts during training and generate data that gives competitive performance on real data. Our method outperforms existing synthesis approaches and when combined with real images improves relative performance by more than 21% on benchmark datasets. In a cross-domain setting, our synthetic data combined with just 10% real data outperforms models trained on all real data.
We introduce fast algorithms for selecting a random sample of n records without replacement from a pool of N records, where the value of N is unknown beforehand. The main … We introduce fast algorithms for selecting a random sample of n records without replacement from a pool of N records, where the value of N is unknown beforehand. The main result of the paper is the design and analysis of Algorithm Z; it does the sampling in one pass using constant space and in O ( n (1 + log( N/n ))) expected time, which is optimum, up to a constant factor. Several optimizations are studied that collectively improve the speed of the naive version of the algorithm by an order of magnitude. We give an efficient Pascal-like implementation that incorporates these modifications and that is suitable for general use. Theoretical and empirical results indicate that Algorithm Z outperforms current methods by a significant margin.
Object viewpoint estimation from 2D images is an essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of … Object viewpoint estimation from 2D images is an essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of powerful features. Inspired by the growing availability of 3D models, we propose a framework to address both issues by combining render-based image synthesis and CNNs (Convolutional Neural Networks). We believe that 3D models have the potential in generating a large number of images of high variation, which can be well exploited by deep CNN with a high learning capacity. Towards this goal, we propose a scalable and overfit-resistant image synthesis pipeline, together with a novel CNN specifically tailored for the viewpoint estimation task. Experimentally, we show that the viewpoint estimation from our pipeline can significantly outperform state-of-the-art methods on PASCAL 3D+ benchmark.
We introduce YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories. First we propose various improvements to the YOLO detection method, both novel and drawn … We introduce YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories. First we propose various improvements to the YOLO detection method, both novel and drawn from prior work. The improved model, YOLOv2, is state-of-the-art on standard detection tasks like PASCAL VOC and COCO. Using a novel, multi-scale training method the same YOLOv2 model can run at varying sizes, offering an easy tradeoff between speed and accuracy. At 67 FPS, YOLOv2 gets 76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6 mAP, outperforming state-of-the-art methods like Faster RCNN with ResNet and SSD while still running significantly faster. Finally we propose a method to jointly train on object detection and classification. Using this method we train YOLO9000 simultaneously on the COCO detection dataset and the ImageNet classification dataset. Our joint training allows YOLO9000 to predict detections for object classes that dont have labelled detection data. We validate our approach on the ImageNet detection task. YOLO9000 gets 19.7 mAP on the ImageNet detection validation set despite only having detection data for 44 of the 200 classes. On the 156 classes not in COCO, YOLO9000 gets 16.0 mAP. YOLO9000 predicts detections for more than 9000 different object categories, all in real-time.
We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and … We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight … Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.
When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover short-comings. Existing benchmarks for visual question … When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover short-comings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate multiple sources of error, making it hard to pinpoint model weaknesses. We present a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations.
We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on contrastive learning as dictionary look-up, we build a dynamic dictionary with a queue and a moving-averaged … We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on contrastive learning as dictionary look-up, we build a dynamic dictionary with a queue and a moving-averaged encoder. This enables building a large and consistent dictionary on-the-fly that facilitates contrastive unsupervised learning. MoCo provides competitive results under the common linear protocol on ImageNet classification. More importantly, the representations learned by MoCo transfer well to downstream tasks. MoCo can outperform its supervised pre-training counterpart in 7 detection/segmentation tasks on PASCAL VOC, COCO, and other datasets, sometimes surpassing it by large margins. This suggests that the gap between unsupervised and supervised representation learning has been largely closed in many vision tasks.
The objective of this paper is self-supervised learning of spatio-temporal embeddings from video, suitable for human action recognition. We make three contributions: First, we introduce the Dense Predictive Coding (DPC) … The objective of this paper is self-supervised learning of spatio-temporal embeddings from video, suitable for human action recognition. We make three contributions: First, we introduce the Dense Predictive Coding (DPC) framework for self-supervised representation learning on videos. This learns a dense encoding of spatio-temporal blocks by recurrently predicting future representations; Second, we propose a curriculum training scheme to predict further into the future with progressively less temporal context. This encourages the model to only encode slowly varying spatial-temporal signals, therefore leading to semantic representations; Third, we evaluate the approach by first training the DPC model on the Kinetics-400 dataset with self-supervised learning, and then finetuning the representation on a downstream task, i.e. action recognition. With single stream (RGB only), DPC pretrained representations achieve state-of-the-art self-supervised performance on both UCF101(75.7% top1 acc) and HMDB51(35.7% top1 acc), outperforming all previous learning methods by a significant margin, and approaching the performance of a baseline pre-trained on ImageNet.
Recent work has shown that optical flow estimation can be formulated as a supervised learning task and can be successfully solved with convolutional networks. Training of the so-called FlowNet was … Recent work has shown that optical flow estimation can be formulated as a supervised learning task and can be successfully solved with convolutional networks. Training of the so-called FlowNet was enabled by a large synthetically generated dataset. The present paper extends the concept of optical flow estimation via convolutional networks to disparity and scene flow estimation. To this end, we propose three synthetic stereo video datasets with sufficient realism, variation, and size to successfully train large networks. Our datasets are the first large-scale datasets to enable training and evaluating scene flow methods. Besides the datasets, we present a convolutional network for real-time disparity estimation that provides state-of-the-art results. By combining a flow and disparity estimation network and training it jointly, we demonstrate the first scene flow estimation with a convolutional network.
Bridging the `reality gap' that separates simulated robotics from experiments on hardware could accelerate robotic research through improved data availability. This paper explores domain randomization, a simple technique for training … Bridging the `reality gap' that separates simulated robotics from experiments on hardware could accelerate robotic research through improved data availability. This paper explores domain randomization, a simple technique for training models on simulated images that transfer to real images by randomizing rendering in the simulator. With enough variability in the simulator, the real world may appear to the model as just another variation. We focus on the task of object localization, which is a stepping stone to general robotic manipulation skills. We find that it is possible to train a real-world object detector that is accurate to 1.5 cm and robust to distractors and partial occlusions using only data from a simulator with non-realistic random textures. To demonstrate the capabilities of our detectors, we show they can be used to perform grasping in a cluttered environment. To our knowledge, this is the first successful transfer of a deep neural network trained only on simulated RGB images (without pre-training on real images) to the real world for the purpose of robotic control.
We introduce a novel method for 3D object detection and pose estimation from color images only. We first use segmentation to detect the objects of interest in 2D even in … We introduce a novel method for 3D object detection and pose estimation from color images only. We first use segmentation to detect the objects of interest in 2D even in presence of partial occlusions and cluttered background. By contrast with recent patch-based methods, we rely on a "holistic" approach: We apply to the detected objects a Convolutional Neural Network (CNN) trained to predict their 3D poses in the form of 2D projections of the corners of their 3D bounding boxes. This, however, is not sufficient for handling objects from the recent T-LESS dataset: These objects exhibit an axis of rotational symmetry, and the similarity of two images of such an object under two different poses makes training the CNN challenging. We solve this problem by restricting the range of poses used for training, and by introducing a classifier to identify the range of a pose at run-time before estimating it. We also use an optional additional step that refines the predicted poses. We improve the state-of-the-art on the LINEMOD dataset from 73.7% [2] to 89.3% of correctly registered RGB frames. We are also the first to report results on the Occlusion dataset [1] using color images only. We obtain 54% of frames passing the Pose 6D criterion on average on several sequences of the T-LESS dataset, compared to the 67% of the state-of-the-art [10] on the same sequences which uses both color and depth. The full approach is also scalable, as a single network can be trained for multiple objects simultaneously.
We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The … We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The proposed approach has three key ingredients: (1) 3D object models are rendered in 3D models of complete scenes with realistic materials and lighting, (2) plausible geometric configuration of objects and cameras in a scene is generated using physics simulation, and (3) high photorealism of the synthesized images is achieved by physically based rendering. When trained on images synthesized by the proposed approach, the Faster R-CNN object detector [1] achieves a 24% absolute improvement of [email protected] on Rutgers APC [2] and 11% on LineMod-Occluded [3] datasets, compared to a baseline where the training images are synthesized by rendering object models on top of random photographs. This work is a step towards being able to effectively train object detectors without capturing or annotating any real images. A dataset of 400K synthetic images with ground truth annotations for various computer vision tasks will be released on the project website: thodan.github.io/objectsynth.
We present a new interactive and online approach to 3D scene understanding. Our system, SemanticPaint, allows users to simultaneously scan their environment whilst interactively segmenting the scene simply by reaching … We present a new interactive and online approach to 3D scene understanding. Our system, SemanticPaint, allows users to simultaneously scan their environment whilst interactively segmenting the scene simply by reaching out and touching any desired object or surface. Our system continuously learns from these segmentations, and labels new unseen parts of the environment. Unlike offline systems where capture, labeling, and batch learning often take hours or even days to perform, our approach is fully online. This provides users with continuous live feedback of the recognition during capture, allowing to immediately correct errors in the segmentation and/or learning—a feature that has so far been unavailable to batch and offline methods. This leads to models that are tailored or personalized specifically to the user's environments and object classes of interest, opening up the potential for new applications in augmented reality, interior design, and human/robot navigation. It also provides the ability to capture substantial labeled 3D datasets for training large-scale visual recognition systems.
Estimating the 6D pose of known objects is important for robots to interact with the real world.The problem is challenging due to the variety of objects as well as the … Estimating the 6D pose of known objects is important for robots to interact with the real world.The problem is challenging due to the variety of objects as well as the complexity of a scene caused by clutter and occlusions between objects.In this work, we introduce PoseCNN, a new Convolutional Neural Network for 6D object pose estimation.PoseCNN estimates the 3D translation of an object by localizing its center in the image and predicting its distance from the camera.The 3D rotation of the object is estimated by regressing to a quaternion representation.We also introduce a novel loss function that enables PoseCNN to handle symmetric objects.In addition, we contribute a large scale video dataset for 6D object pose estimation named the YCB-Video dataset.Our dataset provides accurate 6D poses of 21 objects from the YCB dataset observed in 92 videos with 133,827 frames.We conduct extensive experiments on our YCB-Video dataset and the OccludedLINEMOD dataset to show that PoseCNN is highly robust to occlusions, can handle symmetric objects, and provide accurate pose estimation using only color images as input.When using depth data to further refine the poses, our approach achieves state-of-the-art results on the challenging OccludedLINEMOD dataset.
Recent work has shown that depth estimation from a stereo pair of images can be formulated as a supervised learning task to be resolved with convolutional neural networks (CNNs). However, … Recent work has shown that depth estimation from a stereo pair of images can be formulated as a supervised learning task to be resolved with convolutional neural networks (CNNs). However, current architectures rely on patch-based Siamese networks, lacking the means to exploit context information for finding correspondence in ill-posed regions. To tackle this problem, we propose PSMNet, a pyramid stereo matching network consisting of two main modules: spatial pyramid pooling and 3D CNN. The spatial pyramid pooling module takes advantage of the capacity of global context information by aggregating context in different scales and locations to form a cost volume. The 3D CNN learns to regularize cost volume using stacked multiple hourglass networks in conjunction with intermediate supervision. The proposed approach was evaluated on several benchmark datasets. Our method ranked first in the KITTI 2012 and 2015 leaderboards before March 18, 2018. The codes of PSMNet are available at: https://github.com/JiaRenChang/PSMNet.
Teaching an agent to navigate in an unseen 3D environment is a challenging task, even in the event of simulated environments. To generalize to unseen environments, an agent needs to … Teaching an agent to navigate in an unseen 3D environment is a challenging task, even in the event of simulated environments. To generalize to unseen environments, an agent needs to be robust to low-level variations (e.g. color, texture, object changes), and also high-level variations (e.g. layout changes of the environment). To improve overall generalization, all types of variations in the environment have to be taken under consideration via different level of data augmentation steps. To this end, we propose House3D, a rich, extensible and efficient environment that contains 45,622 human-designed 3D scenes of visually realistic houses, ranging from single-room studios to multi-storied houses, equipped with a diverse set of fully labeled 3D objects, textures and scene layouts, based on the SUNCG dataset (Song et.al.). The diversity in House3D opens the door towards scene-level augmentation, while the label-rich nature of House3D enables us to inject pixel- &amp; task-level augmentations such as domain randomization (Toubin et. al.) and multi-task training. Using a subset of houses in House3D, we show that reinforcement learning agents trained with an enhancement of different levels of augmentations perform much better in unseen environments than our baselines with raw RGB input by over 8% in terms of navigation success rate. House3D is publicly available at http://github.com/facebookresearch/House3D.
We propose a self-supervised approach for learning representations and robotic behaviors entirely from unlabeled videos recorded from multiple viewpoints, and study how this representation can be used in two robotic … We propose a self-supervised approach for learning representations and robotic behaviors entirely from unlabeled videos recorded from multiple viewpoints, and study how this representation can be used in two robotic imitation settings: imitating object interactions from videos of humans, and imitating human poses. Imitation of human behavior requires a viewpoint-invariant representation that captures the relationships between end-effectors (hands or robot grippers) and the environment, object attributes, and body pose. We train our representations using a triplet loss, where multiple simultaneous viewpoints of the same observation are attracted in the embedding space, while being repelled from temporal neighbors which are often visually similar but functionally different. This signal causes our model to discover attributes that do not change across viewpoint, but do change across time, while ignoring nuisance variables such as occlusions, motion blur, lighting and background. We demonstrate that this representation can be used by a robot to directly mimic human poses without an explicit correspondence, and that it can be used as a reward function within a reinforcement learning algorithm. While representations are learned from an unlabeled collection of task-related videos, robot behaviors such as pouring are learned by watching a single 3rd-person demonstration by a human. Reward functions obtained by following the human demonstrations under the learned representation enable efficient reinforcement learning that is practical for real-world robotic systems. Video results, open-source code and dataset are available at sermanet.github.io/imitate.
We propose a single-shot approach for simultaneously detecting an object in an RGB image and predicting its 6D pose without requiring multiple stages or having to examine multiple hypotheses. Unlike … We propose a single-shot approach for simultaneously detecting an object in an RGB image and predicting its 6D pose without requiring multiple stages or having to examine multiple hypotheses. Unlike a recently proposed single-shot technique for this task [10] that only predicts an approximate 6D pose that must then be refined, ours is accurate enough not to require additional post-processing. As a result, it is much faster - 50 fps on a Titan X (Pascal) GPU - and more suitable for real-time processing. The key component of our method is a new CNN architecture inspired by [27, 28] that directly predicts the 2D image locations of the projected vertices of the object's 3D bounding box. The object's 6D pose is then estimated using a PnP algorithm. For single object and multiple object pose estimation on the LINEMOD and OCCLUSION datasets, our approach substantially outperforms other recent CNN-based approaches [10, 25] when they are all used without postprocessing. During post-processing, a pose refinement step can be used to boost the accuracy of these two methods, but at 10 fps or less, they are much slower than our method.
We present a new dataset, called Falling Things (FAT), for advancing the state-of-the-art in object detection and 3D pose estimation in the context of robotics.1 By synthetically combining object models … We present a new dataset, called Falling Things (FAT), for advancing the state-of-the-art in object detection and 3D pose estimation in the context of robotics.1 By synthetically combining object models and backgrounds of complex composition and high graphical quality, we are able to generate photorealistic images with accurate 3D pose annotations for all objects in all images. Our dataset contains 60k annotated photos of 21 household objects taken from the YCB dataset [2]. For each image, we provide the 3D poses, per-pixel class segmentation, and 2D/3D bounding box coordinates for all objects. To facilitate testing different input modalities, we provide mono and stereo RGB images, along with registered dense depth images. We describe in detail the generation process and statistical analysis of the data.
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation. … Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional networks achieve improved segmentation of PASCAL VOC (30% relative improvement to 67.2% mean IU on 2012), NYUDv2, SIFT Flow, and PASCAL-Context, while inference takes one tenth of a second for a typical image.
We propose a novel deep learning architecture for regressing disparity from a rectified pair of stereo images. We leverage knowledge of the problem's geometry to form a cost volume using … We propose a novel deep learning architecture for regressing disparity from a rectified pair of stereo images. We leverage knowledge of the problem's geometry to form a cost volume using deep feature representations. We learn to incorporate contextual information using 3-D convolutions over this volume. Disparity values are regressed from the cost volume using a proposed differentiable soft argmin operation, which allows us to train our method end-to-end to sub-pixel accuracy without any additional post-processing or regularization. We evaluate our method on the Scene Flow and KITTI datasets and on KITTI we set a new stateof-the-art benchmark, while being significantly faster than competing approaches.
We investigate and improve self-supervision as a drop-in replacement for ImageNet pretraining, focusing on automatic colorization as the proxy task. Self-supervised training has been shown to be more promising for … We investigate and improve self-supervision as a drop-in replacement for ImageNet pretraining, focusing on automatic colorization as the proxy task. Self-supervised training has been shown to be more promising for utilizing unlabeled data than other, traditional unsupervised learning methods. We build on this success and evaluate the ability of our self-supervised network in several contexts. On VOC segmentation and classification tasks, we present results that are state-of-the-art among methods not using ImageNet labels for pretraining representations. Moreover, we present the first in-depth analysis of self-supervision via colorization, concluding that formulation of the loss, training details and network architecture play important roles in its effectiveness. This investigation is further expanded by revisiting the ImageNet pretraining paradigm, asking questions such as: How much training data is needed? How many labels are needed? How much do features change when fine-tuned? We relate these questions back to self-supervision by showing that colorization provides a similarly powerful supervisory signal as various flavors of ImageNet pretraining.
We propose a new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-one-out learning. In this task, the machine is asked to identify the unrelated or odd … We propose a new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-one-out learning. In this task, the machine is asked to identify the unrelated or odd element from a set of otherwise related elements. We apply this technique to self-supervised video representation learning where we sample subsequences from videos and ask the network to learn to predict the odd video subsequence. The odd video subsequence is sampled such that it has wrong temporal order of frames while the even ones have the correct temporal order. Therefore, to generate a odd-one-out question no manual annotation is required. Our learning machine is implemented as multi-stream convolutional neural network, which is learned end-to-end. Using odd-one-out networks, we learn temporal representations for videos that generalizes to other related tasks such as action recognition. On action classification, our method obtains 60.3% on the UCF101 dataset using only UCF101 data for training which is approximately 10% better than current state-of-the-art self-supervised learning methods. Similarly, on HMDB51 dataset we outperform self-supervised state-of-the art methods by 12.7% on action classification task.
Machine learning algorithms frequently require careful tuning of model hyperparameters, regularization terms, and optimization parameters. Unfortunately, this tuning is often a "black art" that requires expert experience, unwritten rules of … Machine learning algorithms frequently require careful tuning of model hyperparameters, regularization terms, and optimization parameters. Unfortunately, this tuning is often a "black art" that requires expert experience, unwritten rules of thumb, or sometimes brute-force search. Much more appealing is the idea of developing automatic approaches which can optimize the performance of a given learning algorithm to the task at hand. In this work, we consider the automatic tuning problem within the framework of Bayesian optimization, in which a learning algorithm's generalization performance is modeled as a sample from a Gaussian process (GP). The tractable posterior distribution induced by the GP leads to efficient use of the information gathered by previous experiments, enabling optimal choices about what parameters to try next. Here we show how the effects of the Gaussian process prior and the associated inference procedure can have a large impact on the success or failure of Bayesian optimization. We show that thoughtful choices can lead to results that exceed expert-level performance in tuning machine learning algorithms. We also describe new algorithms that take into account the variable cost (duration) of learning experiments and that can leverage the presence of multiple cores for parallel experimentation. We show that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization on a diverse set of contemporary algorithms including latent Dirichlet allocation, structured SVMs and convolutional neural networks.
People can recognize scenes across many different modalities beyond natural images. In this paper, we investigate how to learn cross-modal scene representations that transfer across modalities. To study this problem, … People can recognize scenes across many different modalities beyond natural images. In this paper, we investigate how to learn cross-modal scene representations that transfer across modalities. To study this problem, we introduce a new cross-modal scene dataset. While convolutional neural networks can categorize scenes well, they also learn an intermediate representation not aligned across modalities, which is undesirable for cross-modal transfer applications. We present methods to regularize cross-modal convolutional neural networks so that they have a shared representation that is agnostic of the modality. Our experiments suggest that our scene representation can help transfer representations across modalities for retrieval. Moreover, our visualizations suggest that units emerge in the shared representation that tend to activate on consistent concepts independently of the modality.
We propose a novel and principled hybrid CNN+CRF model for stereo estimation. Our model allows to exploit the advantages of both, convolutional neural networks (CNNs) and conditional random fields (CRFs) … We propose a novel and principled hybrid CNN+CRF model for stereo estimation. Our model allows to exploit the advantages of both, convolutional neural networks (CNNs) and conditional random fields (CRFs) in an unified approach. The CNNs compute expressive features for matching and distinctive color edges, which in turn are used to compute the unary and binary costs of the CRF. For inference, we apply a recently proposed highly parallel dual block descent algorithm which only needs a small fixed number of iterations to compute a high-quality approximate minimizer. As the main contribution of the paper, we propose a theoretically sound method based on the structured output support vector machine (SSVM) to train the hybrid CNN+CRF model on large-scale data end-to-end. Our trained models perform very well despite the fact that we are using shallow CNNs and do not apply any kind of post-processing to the final output of the CRF. We evaluate our combined models on challenging stereo benchmarks such as Middlebury 2014 and Kitti 2015 and also investigate the performance of each individual component.
Estimating human pose, shape, and motion from images and videos are fundamental challenges with many applications. Recent advances in 2D human pose estimation use large amounts of manually-labeled training data … Estimating human pose, shape, and motion from images and videos are fundamental challenges with many applications. Recent advances in 2D human pose estimation use large amounts of manually-labeled training data for learning convolutional neural networks (CNNs). Such data is time consuming to acquire and difficult to extend. Moreover, manual labeling of 3D pose, depth and motion is impractical. In this work we present SURREAL (Synthetic hUmans foR REAL tasks): a new large-scale dataset with synthetically-generated but realistic images of people rendered from 3D sequences of human motion capture data. We generate more than 6 million frames together with ground truth pose, depth maps, and segmentation masks. We show that CNNs trained on our synthetic dataset allow for accurate human depth estimation and human part segmentation in real RGB images. Our results and the new dataset open up new possibilities for advancing person analysis using cheap and large-scale synthetic data.
We describe the DeepMind Kinetics human action video dataset. The dataset contains 400 human action classes, with at least 400 video clips for each action. Each clip lasts around 10s … We describe the DeepMind Kinetics human action video dataset. The dataset contains 400 human action classes, with at least 400 video clips for each action. Each clip lasts around 10s and is taken from a different YouTube video. The actions are human focussed and cover a broad range of classes including human-object interactions such as playing instruments, as well as human-human interactions such as shaking hands. We describe the statistics of the dataset, how it was collected, and give some baseline performance figures for neural network architectures trained and tested for human action classification on this dataset. We also carry out a preliminary analysis of whether imbalance in the dataset leads to bias in the classifiers.