Rules of the Road: Predicting Driving Behavior With a Convolutional Model of Semantic Interactions

Type: Preprint

Publication Date: 2019-06-01

Citations: 242

DOI: https://doi.org/10.1109/cvpr.2019.00865

Abstract

We focus on the problem of predicting future states of entities in complex, real-world driving scenarios. Previous research has approached this problem via low-level signals to predict short time horizons, and has not addressed how to leverage key assets relied upon heavily by industry self-driving systems: (1) large 3D perception efforts which provide highly accurate 3D states of agents with rich attributes, and (2) detailed and accurate semantic maps of the environment (lanes, traffic lights, crosswalks, etc). We present a unified representation which encodes such high-level semantic information in a spatial grid, allowing the use of deep convolutional models to fuse complex scene context. This enables learning entity-entity and entity-environment interactions with simple, feed-forward computations in each timestep within an overall temporal model of an agent's behavior. We propose different ways of modelling the future as a {\em distribution} over future states using standard supervised learning. We introduce a novel dataset providing industry-grade rich perception and semantic inputs, and empirically show we can effectively learn fundamentals of driving behavior.

Locations

  • arXiv (Cornell University) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - View

Similar Works

Action Title Year Authors
+ Separating the World and Ego Models for Self-Driving 2022 Vlad Sobal
Alfredo Canziani
Nicolas Carion
Kyunghyun Cho
Yann LeCun
+ What-If Motion Prediction for Autonomous Driving 2020 Siddhesh Khandelwal
William Qi
Jagjeet Singh
Andrew T. Hartnett
Deva Ramanan
+ What-If Motion Prediction for Autonomous Driving 2020 Siddhesh Khandelwal
William Qi
Jagjeet Singh
Andrew T. Hartnett
Deva Ramanan
+ PDF Chat MFTraj: Map-Free, Behavior-Driven Trajectory Prediction for Autonomous Driving 2024 Haicheng Liao
Zhenning Li
Chengyue Wang
Huanming Shen
Bonan Wang
Dongping Liao
Guofa Li
Cheng‐Zhong Xu
+ PDF Chat MFTraj: Map-Free, Behavior-Driven Trajectory Prediction for Autonomous Driving 2024 Haicheng Liao
Zhenning Li
Chengyue Wang
Huanming Shen
Dongping Liao
Bonan Wang
Guofa Li
Cheng‐Zhong Xu
+ ReasonNet: End-to-End Driving with Temporal and Global Reasoning 2023 Hao Shao
Letian Wang
Ruobing Chen
Steven L. Waslander
Hongsheng Li
Yu Liu
+ PDF Chat A Survey of World Models for Autonomous Driving 2025 Tao Feng
Wenguan Wang
Yi Yang
+ PDF Chat ReasonNet: End-to-End Driving with Temporal and Global Reasoning 2023 Hao Shao
Letian Wang
Ruobing Chen
Steven L. Waslander
Hongsheng Li
Yu Liu
+ PDF Chat Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks 2019 Henggang Cui
Vladan Radosavljević
Fang‐Chieh Chou
Tsung-Han Lin
Thi Nguyen
Tzu-Kuo Huang
Jeff Schneider
Nemanja Djuric
+ Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks 2018 Henggang Cui
Vladan Radosavljević
Fang‐Chieh Chou
Tsung-Han Lin
Thi Nguyen
Tzu-Kuo Huang
Jeff Schneider
Nemanja Djuric
+ PDF Chat BehaviorGPT: Smart Agent Simulation for Autonomous Driving with Next-Patch Prediction 2024 Zikang Zhou
Haibo Hu
Xinhong Chen
Jianping Wang
Nan Guan
Kui Wu
Yung‐Hui Li
Yu-Kai Huang
Chun Jason Xue
+ PDF Chat Reinforcement Learning for Autonomous Driving with Latent State Inference and Spatial-Temporal Relationships 2021 Xiaobai Ma
Jiachen Li
Mykel J. Kochenderfer
David Isele
Kikuo Fujimura
+ Reinforcement Learning for Autonomous Driving with Latent State Inference and Spatial-Temporal Relationships 2020 Xiaobai Ma
Jiachen Li
Mykel J. Kochenderfer
David Isele
Kikuo Fujimura
+ Efficient Learning of Urban Driving Policies Using Bird's-Eye-View State Representations 2023 Raphael Trumpp
Martin BĂŒchner
Abhinav Valada
Marco Caccamo
+ PDF Chat Deep Occupancy-Predictive Representations for Autonomous Driving 2023 Eivind Meyer
Lars Frederik Peiss
Matthias Althoff
+ PDF Chat SceneMotion: From Agent-Centric Embeddings to Scene-Wide Forecasts 2024 Royden Wagner
Ömer ƞahin TaƟ
M. Steiner
Fabian Konstantinidis
Hendrik Königshof
Marvin Klemp
C. FernĂĄndez
Christoph Stiller
+ PDF Chat PredictionNet: Real-Time Joint Probabilistic Traffic Prediction for Planning, Control, and Simulation 2022 A. Kamenev
Wang Li-rui
Ollin Boer Bohan
Ishwar Kulkarni
Bilal Kartal
Artem Molchanov
Stan Birchfield
D. Nistér
Nikolai Smolyanskiy
+ PredictionNet: Real-Time Joint Probabilistic Traffic Prediction for Planning, Control, and Simulation 2021 A. Kamenev
Lirui Wang
Ollin Boer Bohan
Ishwar Kulkarni
Bilal Kartal
Artem Molchanov
Stan Birchfield
D. Nistér
Nikolai Smolyanskiy
+ VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation 2020 Jiyang Gao
Chen Sun
Hang Zhao
Yi Shen
Dragomir Anguelov
Congcong Li
Cordelia Schmid
+ Learning Driving Policies for End-to-End Autonomous Driving 2022 Shoaib Azam
Farzeen Munir
Moongu Jeon

Works That Cite This (142)

Action Title Year Authors
+ PDF Chat Learnable Online Graph Representations for 3D Multi-Object Tracking 2022 Jan-Nico Zaech
Alexander Liniger
Dengxin Dai
Martin Danelljan
Luc Van Gool
+ PDF Chat Learning Lane Graph Representations for Motion Forecasting 2020 Ming Liang
Bin Yang
Rui Hu
Yun Chen
Renjie Liao
Song Feng
Raquel Urtasun
+ Pedestrian Simulation: A Review 2021 Amir Rasouli
+ PDF Chat Self-Supervised Action-Space Prediction for Automated Driving 2021 Faris JanjoĆĄ
Maxim Dolgov
J. Marius Zöllner
+ PDF Chat Understanding Bird’s-Eye View of Road Semantics Using an Onboard Camera 2022 Yiğit Baran Can
Alexander Liniger
Ozan Unal
Danda Pani Paudel
Luc Van Gool
+ Trajectory Forecasts in Unknown Environments Conditioned on Grid-Based Plans 2020 Nachiket Deo
Mohan M. Trivedi
+ Monocular BEV Perception of Road Scenes Via Front-to-Top View Projection 2024 Wenxi Liu
Qi Li
Weixiang Yang
Jiaxin Cai
Yuanlong Yu
Yuexin Ma
Shengfeng He
Jia Pan
+ PDF Chat Motion Inspired Unsupervised Perception and Prediction in Autonomous Driving 2022 Mahyar Najibi
Jingwei Ji
Yin Zhou
Charles R. Qi
Xinchen Yan
Scott Ettinger
Dragomir Anguelov
+ PDF Chat Congestion-aware Multi-agent Trajectory Prediction for Collision Avoidance 2021 Xu Xie
Chi Zhang
Yixin Zhu
Ying Wu
Song‐Chun Zhu
+ PDF Chat TAFormer: A Unified Target-Aware Transformer for Video and Motion Joint Prediction in Aerial Scenes 2024 Liangyu Xu
Wanxuan Lu
Hongfeng Yu
Yongqiang Mao
Hanbo Bi
Chenglong Liu
Xian Sun
Kun Fu