Author Description

Login to generate an author description

Ask a Question About This Mathematician

We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our … We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep convolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark [2] both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors [4] and sub-category detection [23][24]. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset[26].
Deep networks have recently enjoyed enormous success when applied to recognition and classification problems in computer vision [22, 33], but their use in graphics problems has been limited ([23, 7] … Deep networks have recently enjoyed enormous success when applied to recognition and classification problems in computer vision [22, 33], but their use in graphics problems has been limited ([23, 7] are notable recent exceptions). In this work, we present a novel deep architecture that performs new view synthesis directly from pixels, trained from a large number of posed image sets. In contrast to traditional approaches, which consist of multiple complex stages of processing, each of which requires careful tuning and can fail in unexpected ways, our system is trained end-to-end. The pixels from neighboring views of a scene are presented to the network, which then directly produces the pixels of the unseen view. The benefits of our approach include generality (we only require posed image sets and can easily apply our method to different domains), and high quality results on traditionally difficult scenes. We believe this is due to the end-to-end nature of our system, which is able to plausibly generate pixels according to color, depth, and texture priors learnt automatically from the training data. We show view interpolation results on imagery from the KITTI dataset [12], from data from [1] as well as on Google Street View images. To our knowledge, our work is the first to apply deep learning to the problem of new view synthesis from sets of real-world, natural imagery.
We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse … We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse camera viewpoints. The resulting method incorporates occlusion reasoning, improving performance on challenging scene features such as object boundaries, lighting reflections, thin structures, and scenes with high depth complexity. We show that our method achieves high-quality, state-of-the-art results on two datasets: the Kalantari light field dataset, and a new camera array dataset, Spaces, which we make publicly available.
The view synthesis problem--generating novel views of a scene from known imagery--has garnered recent attention due in part to compelling applications in virtual and augmented reality. In this paper, we … The view synthesis problem--generating novel views of a scene from known imagery--has garnered recent attention due in part to compelling applications in virtual and augmented reality. In this paper, we explore an intriguing scenario for view synthesis: extrapolating views from imagery captured by narrow-baseline stereo cameras, including VR cameras and now-widespread dual-lens camera phones. We call this problem stereo magnification, and propose a learning framework that leverages a new layered representation that we call multiplane images (MPIs). Our method also uses a massive new data source for learning view extrapolation: online videos on YouTube. Using data mined from such videos, we train a deep network that predicts an MPI from an input stereo image pair. This inferred MPI can then be used to synthesize a range of novel views of the scene, including views that extrapolate significantly beyond the input baseline. We show that our method compares favorably with several recent view synthesis methods, and demonstrate applications in magnifying narrow-baseline stereo images.
We present a learning-based method to infer plausible high dynamic range (HDR), omnidirectional illumination given an unconstrained, low dynamic range (LDR) image from a mobile phone camera with a limited … We present a learning-based method to infer plausible high dynamic range (HDR), omnidirectional illumination given an unconstrained, low dynamic range (LDR) image from a mobile phone camera with a limited field of view (FOV). For training data, we collect videos of various reflective spheres placed within the camera's FOV, leaving most of the background unoccluded, leveraging that materials with diverse reflectance functions reveal different lighting cues in a single exposure. We train a deep neural network to regress from the LDR background image to HDR lighting by matching the LDR ground truth sphere images to those rendered with the predicted illumination using image-based relighting, which is differentiable. Our inference runs at interactive frame rates on a mobile device, enabling realistic rendering of virtual objects into real scenes for mobile mixed reality. Training on automatically exposed and white-balanced videos, we improve the realism of rendered objects compared to the state-of-the art methods for both indoor and outdoor scenes.
Deep networks have recently enjoyed enormous success when applied to recognition and classification problems in computer vision, but their use in graphics problems has been limited. In this work, we … Deep networks have recently enjoyed enormous success when applied to recognition and classification problems in computer vision, but their use in graphics problems has been limited. In this work, we present a novel deep architecture that performs new view synthesis directly from pixels, trained from a large number of posed image sets. In contrast to traditional approaches which consist of multiple complex stages of processing, each of which require careful tuning and can fail in unexpected ways, our system is trained end-to-end. The pixels from neighboring views of a scene are presented to the network which then directly produces the pixels of the unseen view. The benefits of our approach include generality (we only require posed image sets and can easily apply our method to different domains), and high quality results on traditionally difficult scenes. We believe this is due to the end-to-end nature of our system which is able to plausibly generate pixels according to color, depth, and texture priors learnt automatically from the training data. To verify our method we show that it can convincingly reproduce known test views from nearby imagery. Additionally we show images rendered from novel viewpoints. To our knowledge, our work is the first to apply deep learning to the problem of new view synthesis from sets of real-world, natural imagery.
We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse … We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse camera viewpoints. The resulting method incorporates occlusion reasoning, improving performance on challenging scene features such as object boundaries, lighting reflections, thin structures, and scenes with high depth complexity. We show that our method achieves high-quality, state-of-the-art results on two datasets: the Kalantari light field dataset, and a new camera array dataset, Spaces, which we make publicly available.
We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our … We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep convolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors and sub-category detection. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset.
We present a learning-based method to infer plausible high dynamic range (HDR), omnidirectional illumination given an unconstrained, low dynamic range (LDR) image from a mobile phone camera with a limited … We present a learning-based method to infer plausible high dynamic range (HDR), omnidirectional illumination given an unconstrained, low dynamic range (LDR) image from a mobile phone camera with a limited field of view (FOV). For training data, we collect videos of various reflective spheres placed within the camera's FOV, leaving most of the background unoccluded, leveraging that materials with diverse reflectance functions reveal different lighting cues in a single exposure. We train a deep neural network to regress from the LDR background image to HDR lighting by matching the LDR ground truth sphere images to those rendered with the predicted illumination using image-based relighting, which is differentiable. Our inference runs at interactive frame rates on a mobile device, enabling realistic rendering of virtual objects into real scenes for mobile mixed reality. Training on automatically exposed and white-balanced videos, we improve the realism of rendered objects compared to the state-of-the art methods for both indoor and outdoor scenes.
Deep Convolutional Neural Networks (CNNs) are playing important roles in state-of-the-art visual recognition. This paper focuses on modeling the spatial co-occurrence of neuron responses, which is less studied in the … Deep Convolutional Neural Networks (CNNs) are playing important roles in state-of-the-art visual recognition. This paper focuses on modeling the spatial co-occurrence of neuron responses, which is less studied in the previous work. For this, we consider the neurons in the hidden layer as neural words, and construct a set of geometric neural phrases on top of them. The idea that grouping neural words into neural phrases is borrowed from the Bag-of-Visual-Words (BoVW) model. Next, the Geometric Neural Phrase Pooling (GNPP) algorithm is proposed to efficiently encode these neural phrases. GNPP acts as a new type of hidden layer, which punishes the isolated neuron responses after convolution, and can be inserted into a CNN model with little extra computational overhead. Experimental results show that GNPP produces significant and consistent accuracy gain in image classification.
We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse … We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse camera viewpoints. The resulting method incorporates occlusion reasoning, improving performance on challenging scene features such as object boundaries, lighting reflections, thin structures, and scenes with high depth complexity. We show that our method achieves high-quality, state-of-the-art results on two datasets: the Kalantari light field dataset, and a new camera array dataset, Spaces, which we make publicly available.
We present a learning-based method to infer plausible high dynamic range (HDR), omnidirectional illumination given an unconstrained, low dynamic range (LDR) image from a mobile phone camera with a limited … We present a learning-based method to infer plausible high dynamic range (HDR), omnidirectional illumination given an unconstrained, low dynamic range (LDR) image from a mobile phone camera with a limited field of view (FOV). For training data, we collect videos of various reflective spheres placed within the camera's FOV, leaving most of the background unoccluded, leveraging that materials with diverse reflectance functions reveal different lighting cues in a single exposure. We train a deep neural network to regress from the LDR background image to HDR lighting by matching the LDR ground truth sphere images to those rendered with the predicted illumination using image-based relighting, which is differentiable. Our inference runs at interactive frame rates on a mobile device, enabling realistic rendering of virtual objects into real scenes for mobile mixed reality. Training on automatically exposed and white-balanced videos, we improve the realism of rendered objects compared to the state-of-the art methods for both indoor and outdoor scenes.
We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse … We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse camera viewpoints. The resulting method incorporates occlusion reasoning, improving performance on challenging scene features such as object boundaries, lighting reflections, thin structures, and scenes with high depth complexity. We show that our method achieves high-quality, state-of-the-art results on two datasets: the Kalantari light field dataset, and a new camera array dataset, Spaces, which we make publicly available.
We present a learning-based method to infer plausible high dynamic range (HDR), omnidirectional illumination given an unconstrained, low dynamic range (LDR) image from a mobile phone camera with a limited … We present a learning-based method to infer plausible high dynamic range (HDR), omnidirectional illumination given an unconstrained, low dynamic range (LDR) image from a mobile phone camera with a limited field of view (FOV). For training data, we collect videos of various reflective spheres placed within the camera's FOV, leaving most of the background unoccluded, leveraging that materials with diverse reflectance functions reveal different lighting cues in a single exposure. We train a deep neural network to regress from the LDR background image to HDR lighting by matching the LDR ground truth sphere images to those rendered with the predicted illumination using image-based relighting, which is differentiable. Our inference runs at interactive frame rates on a mobile device, enabling realistic rendering of virtual objects into real scenes for mobile mixed reality. Training on automatically exposed and white-balanced videos, we improve the realism of rendered objects compared to the state-of-the art methods for both indoor and outdoor scenes.
The view synthesis problem--generating novel views of a scene from known imagery--has garnered recent attention due in part to compelling applications in virtual and augmented reality. In this paper, we … The view synthesis problem--generating novel views of a scene from known imagery--has garnered recent attention due in part to compelling applications in virtual and augmented reality. In this paper, we explore an intriguing scenario for view synthesis: extrapolating views from imagery captured by narrow-baseline stereo cameras, including VR cameras and now-widespread dual-lens camera phones. We call this problem stereo magnification, and propose a learning framework that leverages a new layered representation that we call multiplane images (MPIs). Our method also uses a massive new data source for learning view extrapolation: online videos on YouTube. Using data mined from such videos, we train a deep network that predicts an MPI from an input stereo image pair. This inferred MPI can then be used to synthesize a range of novel views of the scene, including views that extrapolate significantly beyond the input baseline. We show that our method compares favorably with several recent view synthesis methods, and demonstrate applications in magnifying narrow-baseline stereo images.
We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our … We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep convolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark [2] both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors [4] and sub-category detection [23][24]. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset[26].
We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our … We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep convolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors and sub-category detection. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset.
Deep networks have recently enjoyed enormous success when applied to recognition and classification problems in computer vision [22, 33], but their use in graphics problems has been limited ([23, 7] … Deep networks have recently enjoyed enormous success when applied to recognition and classification problems in computer vision [22, 33], but their use in graphics problems has been limited ([23, 7] are notable recent exceptions). In this work, we present a novel deep architecture that performs new view synthesis directly from pixels, trained from a large number of posed image sets. In contrast to traditional approaches, which consist of multiple complex stages of processing, each of which requires careful tuning and can fail in unexpected ways, our system is trained end-to-end. The pixels from neighboring views of a scene are presented to the network, which then directly produces the pixels of the unseen view. The benefits of our approach include generality (we only require posed image sets and can easily apply our method to different domains), and high quality results on traditionally difficult scenes. We believe this is due to the end-to-end nature of our system, which is able to plausibly generate pixels according to color, depth, and texture priors learnt automatically from the training data. We show view interpolation results on imagery from the KITTI dataset [12], from data from [1] as well as on Google Street View images. To our knowledge, our work is the first to apply deep learning to the problem of new view synthesis from sets of real-world, natural imagery.
Deep Convolutional Neural Networks (CNNs) are playing important roles in state-of-the-art visual recognition. This paper focuses on modeling the spatial co-occurrence of neuron responses, which is less studied in the … Deep Convolutional Neural Networks (CNNs) are playing important roles in state-of-the-art visual recognition. This paper focuses on modeling the spatial co-occurrence of neuron responses, which is less studied in the previous work. For this, we consider the neurons in the hidden layer as neural words, and construct a set of geometric neural phrases on top of them. The idea that grouping neural words into neural phrases is borrowed from the Bag-of-Visual-Words (BoVW) model. Next, the Geometric Neural Phrase Pooling (GNPP) algorithm is proposed to efficiently encode these neural phrases. GNPP acts as a new type of hidden layer, which punishes the isolated neuron responses after convolution, and can be inserted into a CNN model with little extra computational overhead. Experimental results show that GNPP produces significant and consistent accuracy gain in image classification.
Deep networks have recently enjoyed enormous success when applied to recognition and classification problems in computer vision, but their use in graphics problems has been limited. In this work, we … Deep networks have recently enjoyed enormous success when applied to recognition and classification problems in computer vision, but their use in graphics problems has been limited. In this work, we present a novel deep architecture that performs new view synthesis directly from pixels, trained from a large number of posed image sets. In contrast to traditional approaches which consist of multiple complex stages of processing, each of which require careful tuning and can fail in unexpected ways, our system is trained end-to-end. The pixels from neighboring views of a scene are presented to the network which then directly produces the pixels of the unseen view. The benefits of our approach include generality (we only require posed image sets and can easily apply our method to different domains), and high quality results on traditionally difficult scenes. We believe this is due to the end-to-end nature of our system which is able to plausibly generate pixels according to color, depth, and texture priors learnt automatically from the training data. To verify our method we show that it can convincingly reproduce known test views from nearby imagery. Additionally we show images rendered from novel viewpoints. To our knowledge, our work is the first to apply deep learning to the problem of new view synthesis from sets of real-world, natural imagery.
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks … In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
We introduce the "exponential linear unit" (ELU) which speeds up learning in deep neural networks and leads to higher classification accuracies. Like rectified linear units (ReLUs), leaky ReLUs (LReLUs) and … We introduce the "exponential linear unit" (ELU) which speeds up learning in deep neural networks and leads to higher classification accuracies. Like rectified linear units (ReLUs), leaky ReLUs (LReLUs) and parametrized ReLUs (PReLUs), ELUs alleviate the vanishing gradient problem via the identity for positive values. However, ELUs have improved learning characteristics compared to the units with other activation functions. In contrast to ReLUs, ELUs have negative values which allows them to push mean unit activations closer to zero like batch normalization but with lower computational complexity. Mean shifts toward zero speed up learning by bringing the normal gradient closer to the unit natural gradient because of a reduced bias shift effect. While LReLUs and PReLUs have negative values, too, they do not ensure a noise-robust deactivation state. ELUs saturate to a negative value with smaller inputs and thereby decrease the forward propagated variation and information. Therefore, ELUs code the degree of presence of particular phenomena in the input, while they do not quantitatively model the degree of their absence. In experiments, ELUs lead not only to faster learning, but also to significantly better generalization performance than ReLUs and LReLUs on networks with more than 5 layers. On CIFAR-100 ELUs networks significantly outperform ReLU networks with batch normalization while batch normalization does not improve ELU networks. ELU networks are among the top 10 reported CIFAR-10 results and yield the best published result on CIFAR-100, without resorting to multi-view evaluation or model averaging. On ImageNet, ELU networks considerably speed up learning compared to a ReLU network with the same architecture, obtaining less than 10% classification error for a single crop, single model network.
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has … We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks … In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level … Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
We present an approach to synthesizing photographic images conditioned on semantic layouts. Given a semantic label map, our approach produces an image with photographic appearance that conforms to the input … We present an approach to synthesizing photographic images conditioned on semantic layouts. Given a semantic label map, our approach produces an image with photographic appearance that conforms to the input layout. The approach thus functions as a rendering engine that takes a two-dimensional semantic specification of the scene and produces a corresponding photographic image. Unlike recent and contemporaneous work, our approach does not rely on adversarial training. We show that photographic images can be synthesized from semantic layouts by a single feedforward network with appropriate structure, trained end-to-end with a direct regression objective. The presented approach scales seamlessly to high resolutions; we demonstrate this by synthesizing photographic images at 2-megapixel resolution, the full resolution of our training data. Extensive perceptual experiments on datasets of outdoor and indoor scenes demonstrate that images synthesized by the presented approach are considerably more realistic than alternative approaches.
Despite the fact that object detection, 3D pose estimation, and sub-category recognition are highly correlated tasks, they are usually addressed independently from each other because of the huge space of … Despite the fact that object detection, 3D pose estimation, and sub-category recognition are highly correlated tasks, they are usually addressed independently from each other because of the huge space of parameters. To jointly model all of these tasks, we propose a coarse-to-fine hierarchical representation, where each level of the hierarchy represents objects at a different level of granularity. The hierarchical representation prevents performance loss, which is often caused by the increase in the number of parameters (as we consider more tasks to model), and the joint modeling enables resolving ambiguities that exist in independent modeling of these tasks. We augment PASCAL3D+ [34] dataset with annotations for these tasks and show that our hierarchical model is effective in joint modeling of object detection, 3D pose estimation, and sub-category recognition.
Predicting depth is an essential component in understanding the 3D geometry of a scene. While for stereo images local correspondence suffices for estimation, finding depth relations from a single image … Predicting depth is an essential component in understanding the 3D geometry of a scene. While for stereo images local correspondence suffices for estimation, finding depth relations from a single image is less straightforward, requiring integration of both global and local information from various cues. Moreover, the task is inherently ambiguous, with a large source of uncertainty coming from the overall scale. In this paper, we present a new method that addresses this task by employing two deep network stacks: one that makes a coarse global prediction based on the entire image, and another that refines this prediction locally. We also apply a scale-invariant error to help measure depth relations rather than scale. By leveraging the raw datasets as large sources of training data, our method achieves state-of-the-art results on both NYU Depth and KITTI, and matches detailed depth boundaries without the need for superpixelation.
We study the complexity of functions computable by deep feedforward neural networks with piecewise linear activations in terms of the symmetries and the number of linear regions that they have. … We study the complexity of functions computable by deep feedforward neural networks with piecewise linear activations in terms of the symmetries and the number of linear regions that they have. Deep networks are able to sequentially map portions of each layer's input-space to the same output. In this way, deep models compute functions that react equally to complicated patterns of different inputs. The compositional structure of these functions enables them to re-use pieces of computation exponentially often in terms of the network's depth. This paper investigates the complexity of such compositional maps and contributes new theoretical results regarding the advantage of depth for neural networks with piecewise linear activation functions. In particular, our analysis is not specific to a single family of models, and as an example, we employ it for rectifier and maxout networks. We improve complexity bounds from pre-existing work and investigate the behavior of units in higher layers.
We train a generative convolutional neural network which is able to generate images of objects given object type, viewpoint, and color. We train the network in a supervised manner on … We train a generative convolutional neural network which is able to generate images of objects given object type, viewpoint, and color. We train the network in a supervised manner on a dataset of rendered 3D chair models. Our experiments show that the network does not merely learn all images by heart, but rather finds a meaningful representation of a 3D chair model allowing it to assess the similarity of different chairs, interpolate between given viewpoints to generate the missing ones, or invent new chair styles by interpolating between chairs from the training set. We show that the network can be used to find correspondences between different chairs from the dataset, outperforming existing approaches on this task.
In this article we develop an image based rendering technique based on light field reconstruction from a limited set of perspective views acquired by cameras. Our approach utilizes sparse representation … In this article we develop an image based rendering technique based on light field reconstruction from a limited set of perspective views acquired by cameras. Our approach utilizes sparse representation of epipolar-plane images (EPI) in shearlet transform domain. The shearlet transform has been specifically modified to handle the straight lines characteristic for EPI. The devised iterative regularization algorithm based on adaptive thresholding provides high-quality reconstruction results for relatively big disparities between neighboring views. The generated densely sampled light field of a given 3D scene is thus suitable for all applications which require light field reconstruction. The proposed algorithm compares favorably against state of the art depth image based rendering techniques and shows superior performance specifically in reconstructing scenes containing semi-transparent objects.
In this paper we are extracting surface reflectance and natural environmental illumination from a reflectance map, i.e. from a single 2D image of a sphere of one material under one … In this paper we are extracting surface reflectance and natural environmental illumination from a reflectance map, i.e. from a single 2D image of a sphere of one material under one illumination. This is a notoriously difficult problem, yet key to various re-rendering applications. With the recent advances in estimating reflectance maps from 2D images their further decomposition has become increasingly relevant. To this end, we propose a Convolutional Neural Network (CNN) architecture to reconstruct both material parameters (i.e. Phong) as well as illumination (i.e. high-resolution spherical illumination maps), that is solely trained on synthetic data. We demonstrate that decomposition of synthetic as well as real photographs of reflectance maps, both in High Dynamic Range (HDR), and, for the first time, on Low Dynamic Range (LDR) as well. Results are compared to previous approaches quantitatively as well as qualitatively in terms of re-renderings where illumination, material, view or shape are changed.
We propose a systematic approach to reduce the memory consumption of deep neural network training. Specifically, we design an algorithm that costs O(sqrt(n)) memory to train a n layer network, … We propose a systematic approach to reduce the memory consumption of deep neural network training. Specifically, we design an algorithm that costs O(sqrt(n)) memory to train a n layer network, with only the computational cost of an extra forward pass per mini-batch. As many of the state-of-the-art models hit the upper bound of the GPU memory, our algorithm allows deeper and more complex models to be explored, and helps advance the innovations in deep learning research. We focus on reducing the memory cost to store the intermediate feature maps and gradients during training. Computation graph analysis is used for automatic in-place operation and memory sharing optimizations. We show that it is possible to trade computation for memory - giving a more memory efficient training algorithm with a little extra computation cost. In the extreme case, our analysis also shows that the memory consumption can be reduced to O(log n) with as little as O(n log n) extra cost for forward computation. Our experiments show that we can reduce the memory cost of a 1,000-layer deep residual network from 48G to 7G with only 30 percent additional running time cost on ImageNet problems. Similarly, significant memory cost reduction is observed in training complex recurrent neural networks on very long sequences.
In the past few years, convolutional neural nets (CNN) have shown incredible promise for learning visual representations. In this paper, we use CNNs for the task of predicting surface normals … In the past few years, convolutional neural nets (CNN) have shown incredible promise for learning visual representations. In this paper, we use CNNs for the task of predicting surface normals from a single image. But what is the right architecture we should use? We propose to build upon the decades of hard work in 3D scene understanding, to design new CNN architecture for the task of surface normal estimation. We show by incorporating several constraints (man-made, manhattan world) and meaningful intermediate representations (room layout, edge labels) in the architecture leads to state of the art performance on surface normal estimation. We also show that our network is quite robust and show state of the art results on other datasets as well without any fine-tuning.
In Convolutional Neural Network (CNN)-based object detection methods, region proposal becomes a bottleneck when objects exhibit significant scale variation, occlusion or truncation. In addition, these methods mainly focus on 2D … In Convolutional Neural Network (CNN)-based object detection methods, region proposal becomes a bottleneck when objects exhibit significant scale variation, occlusion or truncation. In addition, these methods mainly focus on 2D object detection and cannot estimate detailed properties of objects. In this paper, we propose subcategory-aware CNNs for object detection. We introduce a novel region proposal network that uses subcategory information to guide the proposal generating process, and a new detection network for joint detection and subcategory classification. By using subcategories related to object pose, we achieve state of-the-art performance on both detection and pose estimation on commonly used benchmarks.
An increasing number of computer vision tasks can be tackled with deep features, which are the intermediate outputs of a pre-trained Convolutional Neural Network. Despite the astonishing performance, deep features … An increasing number of computer vision tasks can be tackled with deep features, which are the intermediate outputs of a pre-trained Convolutional Neural Network. Despite the astonishing performance, deep features extracted from low-level neurons are still below satisfaction, arguably because they cannot access the spatial context contained in the higher layers. In this paper, we present InterActive, a novel algorithm which computes the activeness of neurons and network connections. Activeness is propagated through a neural network in a top-down manner, carrying highlevel context and improving the descriptive power of lowlevel and mid-level neurons. Visualization indicates that neuron activeness can be interpreted as spatial-weighted neuron responses. We achieve state-of-the-art classification performance on a wide range of image datasets.
The ability to edit materials of objects in images is desirable by many content creators. However, this is an extremely challenging task as it requires to disentangle intrinsic physical properties … The ability to edit materials of objects in images is desirable by many content creators. However, this is an extremely challenging task as it requires to disentangle intrinsic physical properties of an image. We propose an end-to-end network architecture that replicates the forward image formation process to accomplish this task. Specifically, given a single image, the network first predicts intrinsic properties, i.e. shape, illumination, and material, which are then provided to a rendering layer. This layer performs in-network image synthesis, thereby enabling the network to understand the physics behind the image formation process. The proposed rendering layer is fully differentiable, supports both diffuse and specular materials, and thus can be applicable in a variety of problem settings. We demonstrate a rich set of visually plausible material editing examples and provide an extensive comparative study.
L-BFGS-B is a limited-memory algorithm for solving large nonlinear optimization problems subject to simple bounds on the variables. It is intended for problems in which information on the Hessian matrix … L-BFGS-B is a limited-memory algorithm for solving large nonlinear optimization problems subject to simple bounds on the variables. It is intended for problems in which information on the Hessian matrix is difficult to obtain, or for large dense problems. L-BFGS-B can also be used for unconstrained problems and in this case performs similarly to its predessor, algorithm L-BFGS (Harwell routine VA15). The algorithm is implemented in Fortran 77.
Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced … Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.
The latest generation of Convolutional Neural Networks (CNN) have achieved impressive results in challenging benchmarks on image recognition and object detection, significantly raising the interest of the community in these … The latest generation of Convolutional Neural Networks (CNN) have achieved impressive results in challenging benchmarks on image recognition and object detection, significantly raising the interest of the community in these methods. Nevertheless, it is still unclear how different CNN methods compare with each other and with previous state-of-the-art shallow representations such as the Bag-of-Visual-Words and the Improved Fisher Vector. This paper conducts a rigorous evaluation of these new techniques, exploring different deep architectures and comparing them on a common ground, identifying and disclosing important implementation details. We identify several useful properties of CNN-based representations, including the fact that the dimensionality of the CNN output layer can be reduced significantly without having an adverse effect on performance. We also identify aspects of deep and shallow methods that can be successfully shared. In particular, we show that the data augmentation techniques commonly applied to CNN-based methods can also be applied to shallow methods, and result in an analogous performance boost. Source code and models to reproduce the experiments in the paper is made publicly available.
We present a user-friendly image editing system that supports a drag-and-drop object insertion (where the user merely drags objects into the image, and the system automatically places them in 3D … We present a user-friendly image editing system that supports a drag-and-drop object insertion (where the user merely drags objects into the image, and the system automatically places them in 3D and relights them appropriately), postprocess illumination editing, and depth-of-field manipulation. Underlying our system is a fully automatic technique for recovering a comprehensive 3D scene model (geometry, illumination, diffuse albedo, and camera parameters) from a single, low dynamic range photograph. This is made possible by two novel contributions: an illumination inference algorithm that recovers a full lighting model of the scene (including light sources that are not directly visible in the photograph), and a depth estimation algorithm that combines data-driven depth transfer with geometric reasoning about the scene layout. A user study shows that our system produces perceptually convincing results, and achieves the same level of realism as techniques that require significant user interaction.
We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders - a convolutional neural network trained to generate the … We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders - a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order to succeed at this task, context encoders need to both understand the content of the entire image, as well as produce a plausible hypothesis for the missing part(s). When training context encoders, we have experimented with both a standard pixel-wise reconstruction loss, as well as a reconstruction plus an adversarial loss. The latter produces much sharper results because it can better handle multiple modes in the output. We found that a context encoder learns a representation that captures not just appearance but also the semantics of visual structures. We quantitatively demonstrate the effectiveness of our learned features for CNN pre-training on classification, detection, and segmentation tasks. Furthermore, context encoders can be used for semantic inpainting tasks, either stand-alone or as initialization for non-parametric methods.
Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer … Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.
Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To interface a highly sparse LiDAR … Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To interface a highly sparse LiDAR point cloud with a region proposal network (RPN), most existing efforts have focused on hand-crafted feature representations, for example, a bird's eye view projection. In this work, we remove the need of manual feature engineering for 3D point clouds and propose VoxelNet, a generic 3D detection network that unifies feature extraction and bounding box prediction into a single stage, end-to-end trainable deep network. Specifically, VoxelNet divides a point cloud into equally spaced 3D voxels and transforms a group of points within each voxel into a unified feature representation through the newly introduced voxel feature encoding (VFE) layer. In this way, the point cloud is encoded as a descriptive volumetric representation, which is then connected to a RPN to generate detections. Experiments on the KITTI car detection benchmark show that VoxelNet outperforms the state-of-the-art LiDAR based 3D detection methods by a large margin. Furthermore, our network learns an effective discriminative representation of objects with various geometries, leading to encouraging results in 3D detection of pedestrians and cyclists, based on only LiDAR.
The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we … The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed competitors on the tasks for which they are trained, and also generalize well to new tasks with similar structure. We demonstrate this on a number of tasks, including simple convex problems, training neural networks, and styling images with neural art.
Outdoor lighting has extremely high dynamic range. This makes the process of capturing outdoor environment maps notoriously challenging since special equipment must be used. In this work, we propose an … Outdoor lighting has extremely high dynamic range. This makes the process of capturing outdoor environment maps notoriously challenging since special equipment must be used. In this work, we propose an alternative approach. We first capture lighting with a regular, LDR omnidirectional camera, and aim to recover the HDR after the fact via a novel, learning-based inverse tonemapping method. We propose a deep autoencoder framework which regresses linear, high dynamic range data from non-linear, saturated, low dynamic range panoramas. We validate our method through a wide set of experiments on synthetic data, as well as on a novel dataset of real photographs with ground truth. Our approach finds applications in a variety of settings, ranging from outdoor light capture to image matching.
Deep networks have recently enjoyed enormous success when applied to recognition and classification problems in computer vision [22, 33], but their use in graphics problems has been limited ([23, 7] … Deep networks have recently enjoyed enormous success when applied to recognition and classification problems in computer vision [22, 33], but their use in graphics problems has been limited ([23, 7] are notable recent exceptions). In this work, we present a novel deep architecture that performs new view synthesis directly from pixels, trained from a large number of posed image sets. In contrast to traditional approaches, which consist of multiple complex stages of processing, each of which requires careful tuning and can fail in unexpected ways, our system is trained end-to-end. The pixels from neighboring views of a scene are presented to the network, which then directly produces the pixels of the unseen view. The benefits of our approach include generality (we only require posed image sets and can easily apply our method to different domains), and high quality results on traditionally difficult scenes. We believe this is due to the end-to-end nature of our system, which is able to plausibly generate pixels according to color, depth, and texture priors learnt automatically from the training data. We show view interpolation results on imagery from the KITTI dataset [12], from data from [1] as well as on Google Street View images. To our knowledge, our work is the first to apply deep learning to the problem of new view synthesis from sets of real-world, natural imagery.
We present a convolutional neural network-based (CNN-based) technique to estimate high-dynamic range outdoor illumination from a single low dynamic range image. To train the CNN, we leverage a large dataset … We present a convolutional neural network-based (CNN-based) technique to estimate high-dynamic range outdoor illumination from a single low dynamic range image. To train the CNN, we leverage a large dataset of outdoor panoramas. We fit a low-dimensional physically-based outdoor illumination model to the skies in these panoramas giving us a compact set of parameters (including sun position, atmospheric conditions, and camera parameters). We extract limited field-of-view images from the panoramas, and train a CNN with this large set of input image–output lighting parameter pairs. Given a test image, this network can be used to infer illumination parameters that can, in turn, be used to reconstruct an outdoor illumination environment map. We demonstrate that our approach allows the recovery of plausible illumination conditions and enables photorealistic virtual object insertion from a single image. An extensive evaluation on both the panorama dataset and captured HDR environment maps shows that our technique significantly outperforms previous solutions to this problem.
Faithful manipulation of shape, material, and illumination in 2D Internet images would greatly benefit from a reliable factorization of appearance into material (i.e. diffuse and specular) and illumination (i.e. environment … Faithful manipulation of shape, material, and illumination in 2D Internet images would greatly benefit from a reliable factorization of appearance into material (i.e. diffuse and specular) and illumination (i.e. environment maps). On the one hand, current methods that produce very high fidelity results, typically require controlled settings, expensive devices, or significant manual effort. To the other hand, methods that are automatic and work on 'in the wild' Internet images, often extract only low-frequency lighting or diffuse materials. In this work, we propose to make use of a set of photographs in order to jointly estimate the non-diffuse materials and sharp lighting in an uncontrolled setting. Our key observation is that seeing multiple instances of the same material under different illumination (i.e. environment), and different materials under the same illumination provide valuable constraints that can be exploited to yield a high-quality solution (i.e. specular materials and environment illumination) for all the observed materials and environments. Similar constraints also arise when observing multiple materials in a single environment, or a single material across multiple environments. Technically, we enable this by a novel scalable formulation using parametric mixture models that allows for simultaneous estimation of all materials and illumination directly from a set of (uncontrolled) Internet images. The core of this approach is an optimization procedure that uses two neural networks that are trained on synthetic images to predict good gradients in parametric space given observation of reflected light. We evaluate our method on a range of synthetic and real examples to generate high-quality estimates, qualitatively compare our results against state-of-the-art alternatives via a user study, and demonstrate photo-consistent image manipulation that is otherwise very challenging to achieve.
We present SfSNet, an end-to-end learning framework for producing an accurate decomposition of an unconstrained human face image into shape, reflectance and illuminance. SfSNet is designed to reflect a physical … We present SfSNet, an end-to-end learning framework for producing an accurate decomposition of an unconstrained human face image into shape, reflectance and illuminance. SfSNet is designed to reflect a physical lambertian rendering model. SfSNet learns from a mixture of labeled synthetic and unlabeled real world images. This allows the network to capture low frequency variations from synthetic and high frequency details from real images through the photometric reconstruction loss. SfSNet consists of a new decomposition architecture with residual blocks that learns a complete separation of albedo and normal. This is used along with the original image to predict lighting. SfSNet produces significantly better quantitative and qualitative results than state-of-the-art methods for inverse rendering and independent normal and illumination estimation.
Recent advances in deep learning have shown exciting promise in filling large holes in natural images with semantically plausible and context aware details, impacting fundamental image manipulation tasks such as … Recent advances in deep learning have shown exciting promise in filling large holes in natural images with semantically plausible and context aware details, impacting fundamental image manipulation tasks such as object removal. While these learning-based methods are significantly more effective in capturing high-level features than prior techniques, they can only handle very low-resolution inputs due to memory limitations and difficulty in training. Even for slightly larger images, the inpainted regions would appear blurry and unpleasant boundaries become visible. We propose a multi-scale neural patch synthesis approach based on joint optimization of image content and texture constraints, which not only preserves contextual structures but also produces high-frequency details by matching and adapting patches with the most similar mid-layer feature correlations of a deep classification network. We evaluate our method on the ImageNet and Paris Streetview datasets and achieved state-of-the-art inpainting accuracy. We show our approach produces sharper and more coherent results than prior methods, especially for high-resolution images.
Recent deep learning based approaches have shown promising results for the challenging task of inpainting large missing regions in an image. These methods can generate visually plausible image structures and … Recent deep learning based approaches have shown promising results for the challenging task of inpainting large missing regions in an image. These methods can generate visually plausible image structures and textures, but often create distorted structures or blurry textures inconsistent with surrounding areas. This is mainly due to ineffectiveness of convolutional neural networks in explicitly borrowing or copying information from distant spatial locations. On the other hand, traditional texture and patch synthesis approaches are particularly suitable when it needs to borrow textures from the surrounding regions. Motivated by these observations, we propose a new deep generative model-based approach which can not only synthesize novel image structures but also explicitly utilize surrounding image features as references during network training to make better predictions. The model is a feedforward, fully convolutional neural network which can process images with multiple holes at arbitrary locations and with variable sizes during the test time. Experiments on multiple datasets including faces (CelebA, CelebA-HQ), textures (DTD) and natural images (ImageNet, Places2) demonstrate that our proposed approach generates higher-quality inpainting results than existing ones. Code, demo and models are available at: https://github.com/JiahuiYu/generative_inpainting.
We propose a partially learned approach for the solution of ill posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularization theory and … We propose a partially learned approach for the solution of ill posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularization theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularizing functional. The method results in a gradient-like iterative scheme, where the "gradient" component is learned using a convolutional network that includes the gradients of the data discrepancy and regularizer as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against FBP and TV reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the TV reconstruction while being significantly faster, giving reconstructions of 512 x 512 volumes in about 0.4 seconds using a single GPU.
We propose the Learned Primal-Dual algorithm for tomographic reconstruction. The algorithm accounts for a (possibly non-linear) forward operator in a deep neural network by unrolling a proximal primal-dual optimization method, … We propose the Learned Primal-Dual algorithm for tomographic reconstruction. The algorithm accounts for a (possibly non-linear) forward operator in a deep neural network by unrolling a proximal primal-dual optimization method, but where the proximal operators have been replaced with convolutional neural networks. The algorithm is trained end-to-end, working directly from raw measured data and it does not depend on any initial reconstruction such as filtered back-projection (FBP). We compare performance of the proposed method on low dose computed tomography reconstruction against FBP, total variation (TV), and deep learning based post-processing of FBP. For the Shepp-Logan phantom we obtain >6 dB peak signal to noise ratio improvement against all compared methods. For human phantoms the corresponding improvement is 6.6 dB over TV and 2.2 dB over learned post-processing along with a substantial improvement in the structural similarity index. Finally, our algorithm involves only ten forward-back-projection computations, making the method feasible for time critical clinical applications.
Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, … Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds, which well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.
We describe a technique that automatically generates plausible depth maps from videos using non-parametric depth sampling. We demonstrate our technique in cases where past methods fail (non-translating cameras and dynamic … We describe a technique that automatically generates plausible depth maps from videos using non-parametric depth sampling. We demonstrate our technique in cases where past methods fail (non-translating cameras and dynamic scenes). Our technique is applicable to single images as well as videos. For videos, we use local motion cues to improve the inferred depth maps, while optical flow is used to ensure temporal depth consistency. For training and evaluation, we use a Kinect-based system to collect a large data set containing stereoscopic videos with known depths. We show that our depth estimation technique outperforms the state-of-the-art on benchmark databases. Our technique can be used to automatically convert a monoscopic video into stereo for 3D visualization, and we demonstrate this through a variety of visually pleasing results for indoor and outdoor scenes, including results from the feature film Charade.
In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To … In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is the differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world data feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation.
We propose an automatic method to infer high dynamic range illumination from a single, limited field-of-view, low dynamic range photograph of an indoor scene. In contrast to previous work that … We propose an automatic method to infer high dynamic range illumination from a single, limited field-of-view, low dynamic range photograph of an indoor scene. In contrast to previous work that relies on specialized image capture, user input, and/or simple scene models, we train an end-to-end deep neural network that directly regresses a limited field-of-view photo to HDR illumination, without strong assumptions on scene geometry, material properties, or lighting. We show that this can be accomplished in a three step process: 1) we train a robust lighting classifier to automatically annotate the location of light sources in a large dataset of LDR environment maps, 2) we use these annotations to train a deep neural network that predicts the location of lights in a scene from a single limited field-of-view photo, and 3) we fine-tune this network using a small dataset of HDR environment maps to predict light intensities. This allows us to automatically recover high-quality HDR illumination estimates that significantly outperform previous state-of-the-art methods. Consequently, using our illumination estimates for applications like 3D object insertion, produces photo-realistic results that we validate via a perceptual user study.
Traditional face editing methods often require a number of sophisticated and task specific algorithms to be applied one after the other - a process that is tedious, fragile, and computationally … Traditional face editing methods often require a number of sophisticated and task specific algorithms to be applied one after the other - a process that is tedious, fragile, and computationally intensive. In this paper, we propose an end-to-end generative adversarial network that infers a face-specific disentangled representation of intrinsic face properties, including shape (i.e. normals), albedo, and lighting, and an alpha matte. We show that this network can be trained on "in-the-wild" images by incorporating an in-network physically-based image formation module and appropriate loss functions. Our disentangling latent representation allows for semantically relevant edits, where one aspect offacial appearance can be manipulated while keeping orthogonal properties fixed, and we demonstrate its use for a number offacial editing applications.
We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light … We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light weight deep neural networks. We introduce two simple global hyper-parameters that efficiently trade off between latency and accuracy. These hyper-parameters allow the model builder to choose the right sized model for their application based on the constraints of the problem. We present extensive experiments on resource and accuracy tradeoffs and show strong performance compared to other popular models on ImageNet classification. We then demonstrate the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.
In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across … In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3. The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters
We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 … We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.
We present the first end-to-end approach for real-time material estimation for general object shapes with uniform material that only requires a single color image as input. In addition to Lambertian … We present the first end-to-end approach for real-time material estimation for general object shapes with uniform material that only requires a single color image as input. In addition to Lambertian surface properties, our approach fully automatically computes the specular albedo, material shininess, and a foreground segmentation. We tackle this challenging and ill-posed inverse rendering problem using recent advances in image-to-image translation techniques based on deep convolutional encoder-decoder architectures. The underlying core representations of our approach are specular shading, diffuse shading and mirror images, which allow to learn the effective and accurate separation of diffuse and specular albedo. In addition, we propose a novel highly efficient perceptual rendering loss that mimics real-world image formation and obtains intermediate results even during run time. The estimation of material parameters at real-time frame rates enables exciting mixed-reality applications, such as seamless illumination-consistent integration of virtual objects into real-world scenes, and virtual material cloning. We demonstrate our approach in a live setup, compare it to the state of the art, and demonstrate its effectiveness through quantitative and qualitative evaluation.
With the success of new computational architectures for visual processing, such as convolutional neural networks (CNN) and access to image databases with millions of labeled examples (e.g., ImageNet, Places), the … With the success of new computational architectures for visual processing, such as convolutional neural networks (CNN) and access to image databases with millions of labeled examples (e.g., ImageNet, Places), the state of the art in computer vision is advancing rapidly. One important factor for continued progress is to understand the representations that are learned by the inner layers of these deep architectures. Here we show that object detectors emerge from training CNNs to perform scene classification. As scenes are composed of objects, the CNN for scene classification automatically discovers meaningful objects detectors, representative of the learned scene categories. With object detectors emerging as a result of learning to recognize scenes, our work demonstrates that the same network can perform both scene recognition and object localization in a single forward-pass, without ever having been explicitly taught the notion of objects.
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down … Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization. It also acts as a regularizer, in some cases eliminating the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.9% top-5 validation error (and 4.8% test error), exceeding the accuracy of human raters.
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down … Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization. It also acts as a regularizer, in some cases eliminating the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.9% top-5 validation error (and 4.8% test error), exceeding the accuracy of human raters.