Author Description

Login to generate an author description

Ask a Question About This Mathematician

Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced … Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.
In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D … In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability.
We present Kernel Point Convolution (KPConv), a new design of point convolution, i.e. that operates on point clouds without any intermediate representation. The convolution weights of KPConv are located in … We present Kernel Point Convolution (KPConv), a new design of point convolution, i.e. that operates on point clouds without any intermediate representation. The convolution weights of KPConv are located in Euclidean space by kernel points, and applied to the input points close to them. Its capacity to use any number of kernel points gives KPConv more flexibility than fixed grid convolutions. Furthermore, these locations are continuous in space and can be learned by the network. Therefore, KPConv can be extended to deformable convolutions that learn to adapt kernel points to local geometry. Thanks to a regular subsampling strategy, KPConv is also efficient and robust to varying densities. Whether they use deformable KPConv for complex tasks, or rigid KPconv for simpler tasks, our networks outperform state-of-the-art classification and segmentation approaches on several datasets. We also offer ablation studies and visualizations to provide understanding of what has been learned by KPConv and to validate the descriptive power of deformable KPConv.
3D shape models are becoming widely available and easier to capture, making available 3D information crucial for progress in object classification. Current state-of-theart methods rely on CNNs to address this … 3D shape models are becoming widely available and easier to capture, making available 3D information crucial for progress in object classification. Current state-of-theart methods rely on CNNs to address this problem. Recently, we witness two types of CNNs being developed: CNNs based upon volumetric representations versus CNNs based upon multi-view representations. Empirical results from these two types of CNNs exhibit a large gap, indicating that existing volumetric CNN architectures and approaches are unable to fully exploit the power of 3D representations. In this paper, we aim to improve both volumetric CNNs and multi-view CNNs according to extensive analysis of existing approaches. To this end, we introduce two distinct network architectures of volumetric CNNs. In addition, we examine multi-view CNNs, where we introduce multiresolution filtering in 3D. Overall, we are able to outperform current state-of-the-art methods for both volumetric CNNs and multi-view CNNs. We provide extensive experiments designed to evaluate underlying design choices, thus providing a better understanding of the space of methods available for object classification on 3D data.
Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to … Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data - samples from 2D manifolds in 3D space - we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images.
Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, … Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds and well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.
Object viewpoint estimation from 2D images is an essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of … Object viewpoint estimation from 2D images is an essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of powerful features. Inspired by the growing availability of 3D models, we propose a framework to address both issues by combining render-based image synthesis and CNNs (Convolutional Neural Networks). We believe that 3D models have the potential in generating a large number of images of high variation, which can be well exploited by deep CNN with a high learning capacity. Towards this goal, we propose a scalable and overfit-resistant image synthesis pipeline, together with a novel CNN specifically tailored for the viewpoint estimation task. Experimentally, we show that the viewpoint estimation from our pipeline can significantly outperform state-of-the-art methods on PASCAL 3D+ benchmark.
We introduce a data-driven approach to complete partial 3D shapes through a combination of volumetric deep neural networks and 3D shape synthesis. From a partially-scanned input shape, our method first … We introduce a data-driven approach to complete partial 3D shapes through a combination of volumetric deep neural networks and 3D shape synthesis. From a partially-scanned input shape, our method first infers a low-resolution – but complete – output. To this end, we introduce a 3D-Encoder-Predictor Network (3D-EPN) which is composed of 3D convolutional layers. The network is trained to predict and fill in missing data, and operates on an implicit surface representation that encodes both known and unknown space. This allows us to predict global structure in unknown areas at high accuracy. We then correlate these intermediary results with 3D geometry from a shape database at test time. In a final pass, we propose a patch-based 3D shape synthesis method that imposes the 3D geometry from these retrieved shapes as constraints on the coarsely-completed mesh. This synthesis process enables us to reconstruct fine-scale detail and generate high-resolution output while respecting the global mesh structure obtained by the 3D-EPN. Although our 3D-EPN outperforms state-of-the-art completion method, the main contribution in our work lies in the combination of a data-driven shape predictor and analytic 3D shape synthesis. In our results, we show extensive evaluations on a newly-introduced shape completion benchmark for both real-world and synthetic data.
Many applications in robotics and human-computer interaction can benefit from understanding 3D motion of points in a dynamic environment, widely noted as scene flow. While most previous methods focus on … Many applications in robotics and human-computer interaction can benefit from understanding 3D motion of points in a dynamic environment, widely noted as scene flow. While most previous methods focus on stereo and RGB-D images as input, few try to estimate scene flow directly from point clouds. In this work, we propose a novel deep neural network named FlowNet3D that learns scene flow from point clouds in an end-to-end fashion. Our network simultaneously learns deep hierarchical features of point clouds and flow embeddings that represent point motions, supported by two newly proposed learning layers for point sets. We evaluate the network on both challenging synthetic data from FlyingThings3D and real Lidar scans from KITTI. Trained on synthetic data only, our network successfully generalizes to real scans, outperforming various baselines and showing competitive results to the prior art. We also demonstrate two applications of our scene flow output (scan registration and motion segmentation) to show its potential wide use cases.
As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where … As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where predicting individual object motion is not sufficient. Joint predictions of multiple objects are required for effective route planning. There has been a critical need for high-quality motion data that is rich in both interactions and annotation to develop motion planning models. In this work, we introduce the most diverse interactive motion dataset to our knowledge, and provide specific labels for interacting objects suitable for developing joint prediction models. With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways. It was collected by mining for interesting interactions between vehicles, pedestrians, and cyclists across six cities within the United States. We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent, and provide corresponding high definition 3D maps for each scene. Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models. Finally, we provide strong baseline models for individual-agent prediction and joint-prediction. We hope that this new large-scale interactive motion dataset will provide new opportunities for advancing motion forecasting models.
Deep neural networks are known to be vulnerable to adversarial examples which are carefully crafted instances to cause the models to make wrong predictions. While adversarial examples for 2D images … Deep neural networks are known to be vulnerable to adversarial examples which are carefully crafted instances to cause the models to make wrong predictions. While adversarial examples for 2D images and CNNs have been extensively studied, less attention has been paid to 3D data such as point clouds. Given many safety-critical 3D applications such as autonomous driving, it is important to study how adversarial point clouds could affect current deep 3D models. In this work, we propose several novel algorithms to craft adversarial point clouds against PointNet, a widely used deep neural network for point cloud processing. Our algorithms work in two ways: adversarial point perturbation and adversarial point generation. For point perturbation, we shift existing points negligibly. For point generation, we generate either a set of independent and scattered points or a small number (1-3) of point clusters with meaningful shapes such as balls and airplanes which could be hidden in the human psyche. In addition, we formulate six perturbation measurement metrics tailored to the attacks in point clouds and conduct extensive experiments to evaluate the proposed algorithms on the ModelNet40 3D shape classification dataset. Overall, our attack algorithms achieve a success rate higher than 99% for all targeted attacks.
3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input … 3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input (e.g. VoteNet). However, point cloud data have inherent limitations. They are sparse, lack color information and often suffer from sensor noise. Images, on the other hand, have high resolution and rich texture. Thus they can complement the 3D geometry provided by point clouds. Yet how to effectively use image information to assist point cloud based detection is still an open question. In this work, we build on top of VoteNet and propose a 3D detection architecture called ImVoteNet specialized for RGB-D scenes. ImVoteNet is based on fusing 2D votes in images and 3D votes in point clouds. Compared to prior work on multi-modal detection, we explicitly extract both geometric and semantic features from the 2D images. We leverage camera parameters to lift these features to 3D. To improve the synergy of 2D-3D feature fusion, we also propose a multi-tower training scheme. We validate our model on the challenging SUN RGB-D dataset, advancing state-of-the-art results by 5.7 mAP. We also provide rich ablation studies to analyze the contribution of each design choice.
Building discriminative representations for 3D data has been an important task in computer graphics and computer vision research. Convolutional Neural Networks (CNNs) have shown to operate on 2D images with … Building discriminative representations for 3D data has been an important task in computer graphics and computer vision research. Convolutional Neural Networks (CNNs) have shown to operate on 2D images with great success for a variety of tasks. Lifting convolution operators to 3D (3DCNNs) seems like a plausible and promising next step. Unfortunately, the computational complexity of 3D CNNs grows cubically with respect to voxel resolution. Moreover, since most 3D geometry representations are boundary based, occupied regions do not increase proportionately with the size of the discretization, resulting in wasted computation. In this work, we represent 3D spaces as volumetric fields, and propose a novel design that employs field probing filters to efficiently extract features from them. Each field probing filter is a set of probing points --- sensors that perceive the space. Our learning algorithm optimizes not only the weights associated with the probing points, but also their locations, which deforms the shape of the probing filters and adaptively distributes them in 3D space. The optimized probing points sense the 3D space "intelligently", rather than operating blindly over the entire domain. We show that field probing is significantly more efficient than 3DCNNs, while providing state-of-the-art performance, on classification tasks for 3D object recognition benchmark datasets.
3D shape models are becoming widely available and easier to capture, making available 3D information crucial for progress in object classification. Current state-of-the-art methods rely on CNNs to address this … 3D shape models are becoming widely available and easier to capture, making available 3D information crucial for progress in object classification. Current state-of-the-art methods rely on CNNs to address this problem. Recently, we witness two types of CNNs being developed: CNNs based upon volumetric representations versus CNNs based upon multi-view representations. Empirical results from these two types of CNNs exhibit a large gap, indicating that existing volumetric CNN architectures and approaches are unable to fully exploit the power of 3D representations. In this paper, we aim to improve both volumetric CNNs and multi-view CNNs according to extensive analysis of existing approaches. To this end, we introduce two distinct network architectures of volumetric CNNs. In addition, we examine multi-view CNNs, where we introduce multi-resolution filtering in 3D. Overall, we are able to outperform current state-of-the-art methods for both volumetric CNNs and multi-view CNNs. We provide extensive experiments designed to evaluate underlying design choices, thus providing a better understanding of the space of methods available for object classification on 3D data.
Building discriminative representations for 3D data has been an important task in computer graphics and computer vision research. Convolutional Neural Networks (CNNs) have shown to operate on 2D images with … Building discriminative representations for 3D data has been an important task in computer graphics and computer vision research. Convolutional Neural Networks (CNNs) have shown to operate on 2D images with great success for a variety of tasks. Lifting convolution operators to 3D (3DCNNs) seems like a plausible and promising next step. Unfortunately, the computational complexity of 3D CNNs grows cubically with respect to voxel resolution. Moreover, since most 3D geometry representations are boundary based, occupied regions do not increase proportionately with the size of the discretization, resulting in wasted computation. In this work, we represent 3D spaces as volumetric fields, and propose a novel design that employs field probing filters to efficiently extract features from them. Each field probing filter is a set of probing points -- sensors that perceive the space. Our learning algorithm optimizes not only the weights associated with the probing points, but also their locations, which deforms the shape of the probing filters and adaptively distributes them in 3D space. The optimized probing points sense the 3D space intelligently, rather than operating blindly over the entire domain. We show that field probing is significantly more efficient than 3DCNNs, while providing state-of-the-art performance, on classification tasks for 3D object recognition benchmark datasets.
In autonomous driving, a LiDAR-based object detector should perform reliably at different geographic locations and under various weather conditions. While recent 3D detection research focuses on improving performance within a … In autonomous driving, a LiDAR-based object detector should perform reliably at different geographic locations and under various weather conditions. While recent 3D detection research focuses on improving performance within a single domain, our study reveals that the performance of modern detectors can drop drastically cross-domain. In this paper, we investigate unsupervised domain adaptation (UDA) for LiDAR-based 3D object detection. On the Waymo Domain Adaptation [49] dataset, we identify the deteriorating point cloud quality as the root cause of the performance drop. To address this issue, we present Semantic Point Generation (SPG), a general approach to enhance the reliability of LiDAR detectors against domain shifts. Specifically, SPG generates semantic points at the predicted fore-ground regions and faithfully recovers missing parts of the foreground objects, which are caused by phenomena such as occlusions, low reflectance, or weather interference. By merging the semantic points with the original points, we obtain an augmented point cloud, which can be directly consumed by modern LiDAR-based detectors. To validate the wide applicability of SPG, we experiment with two representative detectors, PointPillars [22] and PV-RCNN [45]. On the UDA task, SPG significantly improves both detectors across all object categories of interest and at all difficulty levels. SPG can also benefit object detection in the original domain. On the Waymo Open Dataset [49] and KITTI [17], SPG improves 3D detection results of these two methods across all categories. Combined with PV-RCNN [45], SPG achieves state-of-the-art 3D detection results on KITTI.
Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced … Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.
While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely underexplored, such as using machines to … While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely underexplored, such as using machines to automatically generate high-quality 3D labels. Existing 3D object detectors fail to satisfy the high-quality requirement for offboard uses due to the limited input and speed constraints. In this paper, we propose a novel offboard 3D object detection pipeline using point cloud sequence data. Observing that different frames capture complementary views of objects, we design the offboard detector to make use of the temporal points through both multi-frame object detection and novel objectcentric refinement models. Evaluated on the Waymo Open Dataset, our pipeline named 3D Auto Labeling shows significant gains compared to the state-of-the-art onboard detectors and our offboard baselines. Its performance is even on par with human labels verified through a human label study. Further experiments demonstrate the application of auto labels for semi-supervised learning and provide extensive analysis to validate various design choices.
Object viewpoint estimation from 2D images is an essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of … Object viewpoint estimation from 2D images is an essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of powerful features. Inspired by the growing availability of 3D models, we propose a framework to address both issues by combining render-based image synthesis and CNNs. We believe that 3D models have the potential in generating a large number of images of high variation, which can be well exploited by deep CNN with a high learning capacity. Towards this goal, we propose a scalable and overfit-resistant image synthesis pipeline, together with a novel CNN specifically tailored for the viewpoint estimation task. Experimentally, we show that the viewpoint estimation from our pipeline can significantly outperform state-of-the-art methods on PASCAL 3D+ benchmark.
We present Kernel Point Convolution (KPConv), a new design of point convolution, i.e. that operates on point clouds without any intermediate representation. The convolution weights of KPConv are located in … We present Kernel Point Convolution (KPConv), a new design of point convolution, i.e. that operates on point clouds without any intermediate representation. The convolution weights of KPConv are located in Euclidean space by kernel points, and applied to the input points close to them. Its capacity to use any number of kernel points gives KPConv more flexibility than fixed grid convolutions. Furthermore, these locations are continuous in space and can be learned by the network. Therefore, KPConv can be extended to deformable convolutions that learn to adapt kernel points to local geometry. Thanks to a regular subsampling strategy, KPConv is also efficient and robust to varying densities. Whether they use deformable KPConv for complex tasks, or rigid KPconv for simpler tasks, our networks outperform state-of-the-art classification and segmentation approaches on several datasets. We also offer ablation studies and visualizations to provide understanding of what has been learned by KPConv and to validate the descriptive power of deformable KPConv.
Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, … Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds and well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.
We introduce a data-driven approach to complete partial 3D shapes through a combination of volumetric deep neural networks and 3D shape synthesis. From a partially-scanned input shape, our method first … We introduce a data-driven approach to complete partial 3D shapes through a combination of volumetric deep neural networks and 3D shape synthesis. From a partially-scanned input shape, our method first infers a low-resolution -- but complete -- output. To this end, we introduce a 3D-Encoder-Predictor Network (3D-EPN) which is composed of 3D convolutional layers. The network is trained to predict and fill in missing data, and operates on an implicit surface representation that encodes both known and unknown space. This allows us to predict global structure in unknown areas at high accuracy. We then correlate these intermediary results with 3D geometry from a shape database at test time. In a final pass, we propose a patch-based 3D shape synthesis method that imposes the 3D geometry from these retrieved shapes as constraints on the coarsely-completed mesh. This synthesis process enables us to reconstruct fine-scale detail and generate high-resolution output while respecting the global mesh structure obtained by the 3D-EPN. Although our 3D-EPN outperforms state-of-the-art completion method, the main contribution in our work lies in the combination of a data-driven shape predictor and analytic 3D shape synthesis. In our results, we show extensive evaluations on a newly-introduced shape completion benchmark for both real-world and synthetic data.
2D-to-3D reconstruction is an ill-posed problem, yet humans are good at solving this problem due to their prior knowledge of the 3D world developed over years. Driven by this observation, … 2D-to-3D reconstruction is an ill-posed problem, yet humans are good at solving this problem due to their prior knowledge of the 3D world developed over years. Driven by this observation, we propose NeRDi, a single-view NeRF synthesis framework with general image priors from 2D diffusion models. Formulating single-view reconstruction as an image-conditioned 3D generation problem, we optimize the NeRF representations by minimizing a diffusion loss on its arbitrary view renderings with a pretrained image diffusion model under the input-view constraint. We leverage off-the-shelf vision-language models and introduce a two-section language guidance as conditioning inputs to the diffusion model. This is essentially helpful for improving multiview content coherence as it narrows down the general image prior conditioned on the semantic and visual features of the single-view input image. Additionally, we introduce a geometric loss based on estimated depth maps to regularize the underlying 3D geometry of the NeRF. Experimental results on the DTU MVS dataset show that our method can synthesize novel views with higher quality even compared to existing methods trained on this dataset. We also demonstrate our generalizability in zero-shot NeRF synthesis for in-the-wild images.
Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to … Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data -- samples from 2D manifolds in 3D space -- we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images.
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance … Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been instrumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -- demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning.
The past few years have witnessed growth in the computational requirements for training deep convolutional neural networks. Current approaches parallelize training onto multiple devices by applying a single parallelization strategy … The past few years have witnessed growth in the computational requirements for training deep convolutional neural networks. Current approaches parallelize training onto multiple devices by applying a single parallelization strategy (e.g., data or model parallelism) to all layers in a network. Although easy to reason about, these approaches result in suboptimal runtime performance in large-scale distributed training, since different layers in a network may prefer different parallelization strategies. In this paper, we propose layer-wise parallelism that allows each layer in a network to use an individual parallelization strategy. We jointly optimize how each layer is parallelized by solving a graph search problem. Our evaluation shows that layer-wise parallelism outperforms state-of-the-art approaches by increasing training throughput, reducing communication costs, achieving better scalability to multiple GPUs, while maintaining original network accuracy.
The past few years have witnessed growth in the computational requirements for training deep convolutional neural networks. Current approaches parallelize training onto multiple devices by applying a single parallelization strategy … The past few years have witnessed growth in the computational requirements for training deep convolutional neural networks. Current approaches parallelize training onto multiple devices by applying a single parallelization strategy (e.g., data or model parallelism) to all layers in a network. Although easy to reason about, these approaches result in suboptimal runtime performance in large-scale distributed training, since different layers in a network may prefer different parallelization strategies. In this paper, we propose layer-wise parallelism that allows each layer in a network to use an individual parallelization strategy. We jointly optimize how each layer is parallelized by solving a graph search problem. Our evaluation shows that layer-wise parallelism outperforms state-of-the-art approaches by increasing training throughput, reducing communication costs, achieving better scalability to multiple GPUs, while maintaining original network accuracy.
3D human pose estimation (HPE) in autonomous vehicles (AV) differs from other use cases in many factors, including the 3D resolution and range of data, absence of dense depth maps, … 3D human pose estimation (HPE) in autonomous vehicles (AV) differs from other use cases in many factors, including the 3D resolution and range of data, absence of dense depth maps, failure modes for LiDAR, relative location between the camera and LiDAR, and a high bar for estimation accuracy. Data collected for other use cases (such as virtual reality, gaming, and animation) may therefore not be usable for AV applications. This necessitates the collection and annotation of a large amount of 3D data for HPE in AV, which is time-consuming and expensive.In this paper, we propose one of the first approaches to alleviate this problem in the AV setting. Specifically, we propose a multi-modal approach which uses 2D labels on RGB images as weak supervision to perform 3D HPE. The proposed multi-modal architecture incorporates LiDAR and camera inputs with an auxiliary segmentation branch. On the Waymo Open Dataset [27], our approach achieves a ∼ 22% relative improvement over camera-only 2D HPE baseline, and ∼ 6% improvement over LiDAR-only model. Finally, careful ablation studies and parts based analysis illustrate the advantages of each of our contributions.
In this work, we study 3D object detection from RGB-D data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D … In this work, we study 3D object detection from RGB-D data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability.
3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input … 3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input (e.g. VoteNet). However, point cloud data have inherent limitations. They are sparse, lack color information and often suffer from sensor noise. Images, on the other hand, have high resolution and rich texture. Thus they can complement the 3D geometry provided by point clouds. Yet how to effectively use image information to assist point cloud based detection is still an open question. In this work, we build on top of VoteNet and propose a 3D detection architecture called ImVoteNet specialized for RGB-D scenes. ImVoteNet is based on fusing 2D votes in images and 3D votes in point clouds. Compared to prior work on multi-modal detection, we explicitly extract both geometric and semantic features from the 2D images. We leverage camera parameters to lift these features to 3D. To improve the synergy of 2D-3D feature fusion, we also propose a multi-tower training scheme. We validate our model on the challenging SUN RGB-D dataset, advancing state-of-the-art results by 5.7 mAP. We also provide rich ablation studies to analyze the contribution of each design choice.
Lidars are depth measuring sensors widely used in autonomous driving and augmented reality. However, the large volume of data produced by lidars can lead to high costs in data storage … Lidars are depth measuring sensors widely used in autonomous driving and augmented reality. However, the large volume of data produced by lidars can lead to high costs in data storage and transmission. While lidar data can be represented as two interchangeable representations: 3D point clouds and range images, most previous work focus on compressing the generic 3D point clouds. In this work, we show that directly compressing the range images can leverage the lidar scanning pattern, compared to compressing the unprojected point clouds. We propose a novel datadriven range image compression algorithm, named RIDDLE (Range Image Deep DeLta Encoding). At its core is a deep model that predicts the next pixel value in a raster scanning order, based on contextual laser shots from both the current and past scans (represented as a 4D point cloud of spherical coordinates and time). The deltas between predictions and original values can then be compressed by entropy encoding. Evaluated on the Waymo Open Dataset and KITTI, our method demonstrates significant improvement in the compression rate (under the same distortion) compared to widely used point cloud and range image compression algorithms as well as recent deep methods.
Deep neural networks are known to be vulnerable to adversarial examples which are carefully crafted instances to cause the models to make wrong predictions. While adversarial examples for 2D images … Deep neural networks are known to be vulnerable to adversarial examples which are carefully crafted instances to cause the models to make wrong predictions. While adversarial examples for 2D images and CNNs have been extensively studied, less attention has been paid to 3D data such as point clouds. Given many safety-critical 3D applications such as autonomous driving, it is important to study how adversarial point clouds could affect current deep 3D models. In this work, we propose several novel algorithms to craft adversarial point clouds against PointNet, a widely used deep neural network for point cloud processing. Our algorithms work in two ways: adversarial point perturbation and adversarial point generation. For point perturbation, we shift existing points negligibly. For point generation, we generate either a set of independent and scattered points or a small number (1-3) of point clusters with meaningful shapes such as balls and airplanes which could be hidden in the human psyche. In addition, we formulate six perturbation measurement metrics tailored to the attacks in point clouds and conduct extensive experiments to evaluate the proposed algorithms on the ModelNet40 3D shape classification dataset. Overall, our attack algorithms achieve a success rate higher than 99% for all targeted attacks
Monocular image-based 3D perception has become an active research area in recent years owing to its applications in autonomous driving. Approaches to monocular 3D perception including detection and tracking, however, … Monocular image-based 3D perception has become an active research area in recent years owing to its applications in autonomous driving. Approaches to monocular 3D perception including detection and tracking, however, often yield inferior performance when compared to LiDAR-based techniques. Through systematic analysis, we identified that per-object depth estimation accuracy is a major factor bounding the performance. Motivated by this observation, we propose a multi-level fusion method that combines different representations (RGB and pseudo-LiDAR) and temporal information across multiple frames for objects (tracklets) to enhance per-object depth estimation. Our proposed fusion method achieves the state-of-the-art performance of per-object depth estimation on the Waymo Open Dataset, the KITTI detection dataset, and the KITTI MOT dataset. We further demonstrate that by simply replacing estimated depth with fusion-enhanced depth, we can achieve significant improvements in monocular 3D perception tasks, including detection and tracking.
Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating … Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating or recreating real-world-like environments is difficult, expensive, and not scalable. Recent generative model techniques have shown promising progress to address such challenges by learning 3D assets using only plentiful 2D images - but still suffer limitations as they leverage either human-curated image datasets or renderings from manually-created synthetic 3D environments. In this paper, we introduce GINA-3D, a generative model that uses real-world driving data from camera and LiDAR sensors to create realistic 3D implicit neural assets of diverse vehicles and pedestrians. Compared to the existing image datasets, the real-world driving setting poses new challenges due to occlusions, lighting-variations and longtail distributions. GINA-3D tackles these challenges by decoupling representation learning and generative modeling into two stages with a learned triplane latent structure, inspired by recent advances in generative modeling of images. To evaluate our approach, we construct a large-scale object-centric dataset containing over 520K images of vehicles and pedestrians from the Waymo Open Dataset, and a new set of 80K images of longtail instances such as construction equipment, garbage trucks, and cable cars. We compare our model with existing approaches and demonstrate that it achieves state-of-the-art performance in quality and diversity for both generated images and geometries.
Closed-set 3D perception models trained on only a predefined set of object categories can be inadequate for safety critical applications such as autonomous driving where new object types can be … Closed-set 3D perception models trained on only a predefined set of object categories can be inadequate for safety critical applications such as autonomous driving where new object types can be encountered after deployment. In this paper, we present a multi-modal auto labeling pipeline capable of generating amodal 3D bounding boxes and tracklets for training models on open-set categories without 3D human labels. Our pipeline exploits motion cues inherent in point cloud sequences in combination with the freely available 2D image-text pairs to identify and track all traffic participants. Compared to the recent studies in this domain, which can only provide class-agnostic auto labels limited to moving objects, our method can handle both static and moving objects in the unsupervised manner and is able to output open-vocabulary semantic labels thanks to the proposed vision-language knowledge distillation. Experiments on the Waymo Open Dataset show that our approach outperforms the prior work by significant margins on various unsupervised 3D perception tasks.
3D object detection is a key module for safety-critical robotics applications such as autonomous driving. For these applications, we care most about how the detections affect the ego-agent's behavior and … 3D object detection is a key module for safety-critical robotics applications such as autonomous driving. For these applications, we care most about how the detections affect the ego-agent's behavior and safety (the egocentric perspective). Intuitively, we seek more accurate descriptions of object geometry when it's more likely to interfere with the ego-agent's motion trajectory. However, current detection metrics, based on box Intersection-over-Union (IoU), are object-centric and aren't designed to capture the spatio-temporal relationship between objects and the ego-agent. To address this issue, we propose a new egocentric measure to evaluate 3D object detection, namely Support Distance Error (SDE). Our analysis based on SDE reveals that the egocentric detection quality is bounded by the coarse geometry of the bounding boxes. Given the insight that SDE would benefit from more accurate geometry descriptions, we propose to represent objects as amodal contours, specifically amodal star-shaped polygons, and devise a simple model, StarPoly, to predict such contours. Our experiments on the large-scale Waymo Open Dataset show that SDE better reflects the impact of detection quality on the ego-agent's safety compared to IoU; and the estimated contours from StarPoly consistently improve the egocentric detection quality over recent 3D object detectors.
We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid. … We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid. Key to our approach is an object-centric canonical 3D coordinate system into which views can be lifted, without explicit camera pose estimation, and then combined -- in a manner that can accommodate a variable number of views and is view order independent. We show that computing a symmetry-aware mapping from pixels to the canonical coordinate system allows us to better propagate information to unseen regions, as well as to robustly overcome pose ambiguities during inference. Our aggregate representation enables us to perform 3D inference tasks like volumetric reconstruction and novel view synthesis, and we use these tasks to demonstrate the benefits of our aggregation approach as compared to implicit or camera-centric alternatives.
Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to … Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data -- samples from 2D manifolds in 3D space -- we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images.
Many applications in robotics and human-computer interaction can benefit from understanding 3D motion of points in a dynamic environment, widely noted as scene flow. While most previous methods focus on … Many applications in robotics and human-computer interaction can benefit from understanding 3D motion of points in a dynamic environment, widely noted as scene flow. While most previous methods focus on stereo and RGB-D images as input, few try to estimate scene flow directly from point clouds. In this work, we propose a novel deep neural network named $FlowNet3D$ that learns scene flow from point clouds in an end-to-end fashion. Our network simultaneously learns deep hierarchical features of point clouds and flow embeddings that represent point motions, supported by two newly proposed learning layers for point sets. We evaluate the network on both challenging synthetic data from FlyingThings3D and real Lidar scans from KITTI. Trained on synthetic data only, our network successfully generalizes to real scans, outperforming various baselines and showing competitive results to the prior art. We also demonstrate two applications of our scene flow output (scan registration and motion segmentation) to show its potential wide use cases.
Occluded and long-range objects are ubiquitous and challenging for 3D object detection. Point cloud sequence data provide unique opportunities to improve such cases, as an occluded or distant object can … Occluded and long-range objects are ubiquitous and challenging for 3D object detection. Point cloud sequence data provide unique opportunities to improve such cases, as an occluded or distant object can be observed from different viewpoints or gets better visibility over time. However, the efficiency and effectiveness in encoding longterm sequence data can still be improved. In this work, we propose MoDAR, using motion forecasting outputs as a type of virtual modality, to augment LiDAR point clouds. The MoDAR modality propagates object information from temporal contexts to a target frame, represented as a set of virtual points, one for each object from a waypoint on a forecasted trajectory. A fused point cloud of both raw sensor points and the virtual points can then be fed to any off-the-shelf point-cloud based 3D object detector. Evaluated on the Waymo Open Dataset, our method significantly improves prior art detectors by using motion forecasting from extra-long sequences (e.g. 18 seconds), achieving new state of the arts, while not adding much computation overhead.
3D shape models are becoming widely available and easier to capture, making available 3D information crucial for progress in object classification. Current state-of-the-art methods rely on CNNs to address this … 3D shape models are becoming widely available and easier to capture, making available 3D information crucial for progress in object classification. Current state-of-the-art methods rely on CNNs to address this problem. Recently, we witness two types of CNNs being developed: CNNs based upon volumetric representations versus CNNs based upon multi-view representations. Empirical results from these two types of CNNs exhibit a large gap, indicating that existing volumetric CNN architectures and approaches are unable to fully exploit the power of 3D representations. In this paper, we aim to improve both volumetric CNNs and multi-view CNNs according to extensive analysis of existing approaches. To this end, we introduce two distinct network architectures of volumetric CNNs. In addition, we examine multi-view CNNs, where we introduce multi-resolution filtering in 3D. Overall, we are able to outperform current state-of-the-art methods for both volumetric CNNs and multi-view CNNs. We provide extensive experiments designed to evaluate underlying design choices, thus providing a better understanding of the space of methods available for object classification on 3D data.
In autonomous driving, a LiDAR-based object detector should perform reliably at different geographic locations and under various weather conditions. While recent 3D detection research focuses on improving performance within a … In autonomous driving, a LiDAR-based object detector should perform reliably at different geographic locations and under various weather conditions. While recent 3D detection research focuses on improving performance within a single domain, our study reveals that the performance of modern detectors can drop drastically cross-domain. In this paper, we investigate unsupervised domain adaptation (UDA) for LiDAR-based 3D object detection. On the Waymo Domain Adaptation dataset, we identify the deteriorating point cloud quality as the root cause of the performance drop. To address this issue, we present Semantic Point Generation (SPG), a general approach to enhance the reliability of LiDAR detectors against domain shifts. Specifically, SPG generates semantic points at the predicted foreground regions and faithfully recovers missing parts of the foreground objects, which are caused by phenomena such as occlusions, low reflectance or weather interference. By merging the semantic points with the original points, we obtain an augmented point cloud, which can be directly consumed by modern LiDAR-based detectors. To validate the wide applicability of SPG, we experiment with two representative detectors, PointPillars and PV-RCNN. On the UDA task, SPG significantly improves both detectors across all object categories of interest and at all difficulty levels. SPG can also benefit object detection in the original domain. On the Waymo Open Dataset and KITTI, SPG improves 3D detection results of these two methods across all categories. Combined with PV-RCNN, SPG achieves state-of-the-art 3D detection results on KITTI.
While multi-class 3D detectors are needed in many robotics applications, training them with fully labeled datasets can be expensive in labeling cost. An alternative approach is to have targeted single-class … While multi-class 3D detectors are needed in many robotics applications, training them with fully labeled datasets can be expensive in labeling cost. An alternative approach is to have targeted single-class labels on disjoint data samples. In this paper, we are interested in training a multi-class 3D object detection model, while using these single-class labeled data. We begin by detailing the unique stance of our "Single-Class Supervision" (SCS) setting with respect to related concepts such as partial supervision and semi supervision. Then, based on the case study of training the multi-class version of Range Sparse Net (RSN), we adapt a spectrum of algorithms - from supervised learning to pseudo-labeling - to fully exploit the properties of our SCS setting, and perform extensive ablation studies to identify the most effective algorithm and practice. Empirical experiments on the Waymo Open Dataset show that proper training under SCS can approach or match full supervision training while saving labeling costs.
As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where … As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where predicting individual object motion is not sufficient. Joint predictions of multiple objects are required for effective route planning. There has been a critical need for high-quality motion data that is rich in both interactions and annotation to develop motion planning models. In this work, we introduce the most diverse interactive motion dataset to our knowledge, and provide specific labels for interacting objects suitable for developing joint prediction models. With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways. It was collected by mining for interesting interactions between vehicles, pedestrians, and cyclists across six cities within the United States. We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent, and provide corresponding high definition 3D maps for each scene. Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models. Finally, we provide strong baseline models for individual-agent prediction and joint-prediction. We hope that this new large-scale interactive motion dataset will provide new opportunities for advancing motion forecasting models.
Many existing motion prediction approaches rely on symbolic perception outputs to generate agent trajectories, such as bounding boxes, road graph information and traffic lights. This symbolic representation is a high-level … Many existing motion prediction approaches rely on symbolic perception outputs to generate agent trajectories, such as bounding boxes, road graph information and traffic lights. This symbolic representation is a high-level abstraction of the real world, which may render the motion prediction model vulnerable to perception errors (e.g., failures in detecting open-vocabulary obstacles) while missing salient information from the scene context (e.g., poor road conditions). An alternative paradigm is end-to-end learning from raw sensors. However, this approach suffers from the lack of interpretability and requires significantly more training resources. In this work, we propose tokenizing the visual world into a compact set of scene elements and then leveraging pre-trained image foundation models and LiDAR neural networks to encode all the scene elements in an open-vocabulary manner. The image foundation model enables our scene tokens to encode the general knowledge of the open world while the LiDAR neural network encodes geometry information. Our proposed representation can efficiently encode the multi-frame multi-modality observations with a few hundred tokens and is compatible with most transformer-based architectures. To evaluate our method, we have augmented Waymo Open Motion Dataset with camera embeddings. Experiments over Waymo Open Motion Dataset show that our approach leads to significant performance improvements over the state-of-the-art.
Closed-set 3D perception models trained on only a predefined set of object categories can be inadequate for safety critical applications such as autonomous driving where new object types can be … Closed-set 3D perception models trained on only a predefined set of object categories can be inadequate for safety critical applications such as autonomous driving where new object types can be encountered after deployment. In this paper, we present a multi-modal auto labeling pipeline capable of generating amodal 3D bounding boxes and tracklets for training models on open-set categories without 3D human labels. Our pipeline exploits motion cues inherent in point cloud sequences in combination with the freely available 2D image-text pairs to identify and track all traffic participants. Compared to the recent studies in this domain, which can only provide class-agnostic auto labels limited to moving objects, our method can handle both static and moving objects in the unsupervised manner and is able to output open-vocabulary semantic labels thanks to the proposed vision-language knowledge distillation. Experiments on the Waymo Open Dataset show that our approach outperforms the prior work by significant margins on various unsupervised 3D perception tasks.
Occluded and long-range objects are ubiquitous and challenging for 3D object detection. Point cloud sequence data provide unique opportunities to improve such cases, as an occluded or distant object can … Occluded and long-range objects are ubiquitous and challenging for 3D object detection. Point cloud sequence data provide unique opportunities to improve such cases, as an occluded or distant object can be observed from different viewpoints or gets better visibility over time. However, the efficiency and effectiveness in encoding longterm sequence data can still be improved. In this work, we propose MoDAR, using motion forecasting outputs as a type of virtual modality, to augment LiDAR point clouds. The MoDAR modality propagates object information from temporal contexts to a target frame, represented as a set of virtual points, one for each object from a waypoint on a forecasted trajectory. A fused point cloud of both raw sensor points and the virtual points can then be fed to any off-the-shelf point-cloud based 3D object detector. Evaluated on the Waymo Open Dataset, our method significantly improves prior art detectors by using motion forecasting from extra-long sequences (e.g. 18 seconds), achieving new state of the arts, while not adding much computation overhead.
Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating … Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating or recreating real-world-like environments is difficult, expensive, and not scalable. Recent generative model techniques have shown promising progress to address such challenges by learning 3D assets using only plentiful 2D images - but still suffer limitations as they leverage either human-curated image datasets or renderings from manually-created synthetic 3D environments. In this paper, we introduce GINA-3D, a generative model that uses real-world driving data from camera and LiDAR sensors to create realistic 3D implicit neural assets of diverse vehicles and pedestrians. Compared to the existing image datasets, the real-world driving setting poses new challenges due to occlusions, lighting-variations and longtail distributions. GINA-3D tackles these challenges by decoupling representation learning and generative modeling into two stages with a learned triplane latent structure, inspired by recent advances in generative modeling of images. To evaluate our approach, we construct a large-scale object-centric dataset containing over 520K images of vehicles and pedestrians from the Waymo Open Dataset, and a new set of 80K images of longtail instances such as construction equipment, garbage trucks, and cable cars. We compare our model with existing approaches and demonstrate that it achieves state-of-the-art performance in quality and diversity for both generated images and geometries.
2D-to-3D reconstruction is an ill-posed problem, yet humans are good at solving this problem due to their prior knowledge of the 3D world developed over years. Driven by this observation, … 2D-to-3D reconstruction is an ill-posed problem, yet humans are good at solving this problem due to their prior knowledge of the 3D world developed over years. Driven by this observation, we propose NeRDi, a single-view NeRF synthesis framework with general image priors from 2D diffusion models. Formulating single-view reconstruction as an image-conditioned 3D generation problem, we optimize the NeRF representations by minimizing a diffusion loss on its arbitrary view renderings with a pretrained image diffusion model under the input-view constraint. We leverage off-the-shelf vision-language models and introduce a two-section language guidance as conditioning inputs to the diffusion model. This is essentially helpful for improving multiview content coherence as it narrows down the general image prior conditioned on the semantic and visual features of the single-view input image. Additionally, we introduce a geometric loss based on estimated depth maps to regularize the underlying 3D geometry of the NeRF. Experimental results on the DTU MVS dataset show that our method can synthesize novel views with higher quality even compared to existing methods trained on this dataset. We also demonstrate our generalizability in zero-shot NeRF synthesis for in-the-wild images.
State-of-art NPUs are typically architected as a self-contained sub-system with multiple heterogeneous hardware computing modules, and a dataflow-driven programming model. There lacks well-established methodology and tools in the industry to … State-of-art NPUs are typically architected as a self-contained sub-system with multiple heterogeneous hardware computing modules, and a dataflow-driven programming model. There lacks well-established methodology and tools in the industry to evaluate and compare the performance of NPUs from different architectures. We present an event-based performance modeling framework, VPU-EM, targeting scalable performance evaluation of modern NPUs across diversified AI workloads. The framework adopts high-level event-based system-simulation methodology to abstract away design details for speed, while maintaining hardware pipelining, concurrency and interaction with software task scheduling. It is natively developed in Python and built to interface directly with AI frameworks such as Tensorflow, PyTorch, ONNX and OpenVINO, linking various in-house NPU graph compilers to achieve optimized full model performance. Furthermore, VPU-EM also provides the capability to model power characteristics of NPU in Power-EM mode to enable joint performance/power analysis. Using VPU-EM, we conduct performance/power analysis of models from representative neural network architecture. We demonstrate that even though this framework is developed for Intel VPU, an Intel in-house NPU IP technology, the methodology can be generalized for analysis of modern NPUs.
Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating … Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating or re-creating real-world-like environments is difficult, expensive, and not scalable. Recent generative model techniques have shown promising progress to address such challenges by learning 3D assets using only plentiful 2D images -- but still suffer limitations as they leverage either human-curated image datasets or renderings from manually-created synthetic 3D environments. In this paper, we introduce GINA-3D, a generative model that uses real-world driving data from camera and LiDAR sensors to create realistic 3D implicit neural assets of diverse vehicles and pedestrians. Compared to the existing image datasets, the real-world driving setting poses new challenges due to occlusions, lighting-variations and long-tail distributions. GINA-3D tackles these challenges by decoupling representation learning and generative modeling into two stages with a learned tri-plane latent structure, inspired by recent advances in generative modeling of images. To evaluate our approach, we construct a large-scale object-centric dataset containing over 1.2M images of vehicles and pedestrians from the Waymo Open Dataset, and a new set of 80K images of long-tail instances such as construction equipment, garbage trucks, and cable cars. We compare our model with existing approaches and demonstrate that it achieves state-of-the-art performance in quality and diversity for both generated images and geometries.
Widely adopted motion forecasting datasets substitute the observed sensory inputs with higher-level abstractions such as 3D boxes and polylines. These sparse shapes are inferred through annotating the original scenes with … Widely adopted motion forecasting datasets substitute the observed sensory inputs with higher-level abstractions such as 3D boxes and polylines. These sparse shapes are inferred through annotating the original scenes with perception systems' predictions. Such intermediate representations tie the quality of the motion forecasting models to the performance of computer vision models. Moreover, the human-designed explicit interfaces between perception and motion forecasting typically pass only a subset of the semantic information present in the original sensory input. To study the effect of these modular approaches, design new paradigms that mitigate these limitations, and accelerate the development of end-to-end motion forecasting models, we augment the Waymo Open Motion Dataset (WOMD) with large-scale, high-quality, diverse LiDAR data for the motion forecasting task. The new augmented dataset WOMD-LiDAR consists of over 100,000 scenes that each spans 20 seconds, consisting of well-synchronized and calibrated high quality LiDAR point clouds captured across a range of urban and suburban geographies (https://waymo.com/open/data/motion/). Compared to Waymo Open Dataset (WOD), WOMD-LiDAR dataset contains 100x more scenes. Furthermore, we integrate the LiDAR data into the motion forecasting model training and provide a strong baseline. Experiments show that the LiDAR data brings improvement in the motion forecasting task. We hope that WOMD-LiDAR will provide new opportunities for boosting end-to-end motion forecasting models.
Occluded and long-range objects are ubiquitous and challenging for 3D object detection. Point cloud sequence data provide unique opportunities to improve such cases, as an occluded or distant object can … Occluded and long-range objects are ubiquitous and challenging for 3D object detection. Point cloud sequence data provide unique opportunities to improve such cases, as an occluded or distant object can be observed from different viewpoints or gets better visibility over time. However, the efficiency and effectiveness in encoding long-term sequence data can still be improved. In this work, we propose MoDAR, using motion forecasting outputs as a type of virtual modality, to augment LiDAR point clouds. The MoDAR modality propagates object information from temporal contexts to a target frame, represented as a set of virtual points, one for each object from a waypoint on a forecasted trajectory. A fused point cloud of both raw sensor points and the virtual points can then be fed to any off-the-shelf point-cloud based 3D object detector. Evaluated on the Waymo Open Dataset, our method significantly improves prior art detectors by using motion forecasting from extra-long sequences (e.g. 18 seconds), achieving new state of the arts, while not adding much computation overhead.
Closed-set 3D perception models trained on only a pre-defined set of object categories can be inadequate for safety critical applications such as autonomous driving where new object types can be … Closed-set 3D perception models trained on only a pre-defined set of object categories can be inadequate for safety critical applications such as autonomous driving where new object types can be encountered after deployment. In this paper, we present a multi-modal auto labeling pipeline capable of generating amodal 3D bounding boxes and tracklets for training models on open-set categories without 3D human labels. Our pipeline exploits motion cues inherent in point cloud sequences in combination with the freely available 2D image-text pairs to identify and track all traffic participants. Compared to the recent studies in this domain, which can only provide class-agnostic auto labels limited to moving objects, our method can handle both static and moving objects in the unsupervised manner and is able to output open-vocabulary semantic labels thanks to the proposed vision-language knowledge distillation. Experiments on the Waymo Open Dataset show that our approach outperforms the prior work by significant margins on various unsupervised 3D perception tasks.
3D human pose estimation (HPE) in autonomous vehicles (AV) differs from other use cases in many factors, including the 3D resolution and range of data, absence of dense depth maps, … 3D human pose estimation (HPE) in autonomous vehicles (AV) differs from other use cases in many factors, including the 3D resolution and range of data, absence of dense depth maps, failure modes for LiDAR, relative location between the camera and LiDAR, and a high bar for estimation accuracy. Data collected for other use cases (such as virtual reality, gaming, and animation) may therefore not be usable for AV applications. This necessitates the collection and annotation of a large amount of 3D data for HPE in AV, which is time-consuming and expensive.In this paper, we propose one of the first approaches to alleviate this problem in the AV setting. Specifically, we propose a multi-modal approach which uses 2D labels on RGB images as weak supervision to perform 3D HPE. The proposed multi-modal architecture incorporates LiDAR and camera inputs with an auxiliary segmentation branch. On the Waymo Open Dataset [27], our approach achieves a ∼ 22% relative improvement over camera-only 2D HPE baseline, and ∼ 6% improvement over LiDAR-only model. Finally, careful ablation studies and parts based analysis illustrate the advantages of each of our contributions.
Lidars are depth measuring sensors widely used in autonomous driving and augmented reality. However, the large volume of data produced by lidars can lead to high costs in data storage … Lidars are depth measuring sensors widely used in autonomous driving and augmented reality. However, the large volume of data produced by lidars can lead to high costs in data storage and transmission. While lidar data can be represented as two interchangeable representations: 3D point clouds and range images, most previous work focus on compressing the generic 3D point clouds. In this work, we show that directly compressing the range images can leverage the lidar scanning pattern, compared to compressing the unprojected point clouds. We propose a novel datadriven range image compression algorithm, named RIDDLE (Range Image Deep DeLta Encoding). At its core is a deep model that predicts the next pixel value in a raster scanning order, based on contextual laser shots from both the current and past scans (represented as a 4D point cloud of spherical coordinates and time). The deltas between predictions and original values can then be compressed by entropy encoding. Evaluated on the Waymo Open Dataset and KITTI, our method demonstrates significant improvement in the compression rate (under the same distortion) compared to widely used point cloud and range image compression algorithms as well as recent deep methods.
While multi-class 3D detectors are needed in many robotics applications, training them with fully labeled datasets can be expensive in labeling cost. An alternative approach is to have targeted single-class … While multi-class 3D detectors are needed in many robotics applications, training them with fully labeled datasets can be expensive in labeling cost. An alternative approach is to have targeted single-class labels on disjoint data samples. In this paper, we are interested in training a multi-class 3D object detection model, while using these single-class labeled data. We begin by detailing the unique stance of our "Single-Class Supervision" (SCS) setting with respect to related concepts such as partial supervision and semi supervision. Then, based on the case study of training the multi-class version of Range Sparse Net (RSN), we adapt a spectrum of algorithms - from supervised learning to pseudo-labeling - to fully exploit the properties of our SCS setting, and perform extensive ablation studies to identify the most effective algorithm and practice. Empirical experiments on the Waymo Open Dataset show that proper training under SCS can approach or match full supervision training while saving labeling costs.
Monocular image-based 3D perception has become an active research area in recent years owing to its applications in autonomous driving. Approaches to monocular 3D perception including detection and tracking, however, … Monocular image-based 3D perception has become an active research area in recent years owing to its applications in autonomous driving. Approaches to monocular 3D perception including detection and tracking, however, often yield inferior performance when compared to LiDAR-based techniques. Through systematic analysis, we identified that per-object depth estimation accuracy is a major factor bounding the performance. Motivated by this observation, we propose a multi-level fusion method that combines different representations (RGB and pseudo-LiDAR) and temporal information across multiple frames for objects (tracklets) to enhance per-object depth estimation. Our proposed fusion method achieves the state-of-the-art performance of per-object depth estimation on the Waymo Open Dataset, the KITTI detection dataset, and the KITTI MOT dataset. We further demonstrate that by simply replacing estimated depth with fusion-enhanced depth, we can achieve significant improvements in monocular 3D perception tasks, including detection and tracking.
Lidars are depth measuring sensors widely used in autonomous driving and augmented reality. However, the large volume of data produced by lidars can lead to high costs in data storage … Lidars are depth measuring sensors widely used in autonomous driving and augmented reality. However, the large volume of data produced by lidars can lead to high costs in data storage and transmission. While lidar data can be represented as two interchangeable representations: 3D point clouds and range images, most previous work focus on compressing the generic 3D point clouds. In this work, we show that directly compressing the range images can leverage the lidar scanning pattern, compared to compressing the unprojected point clouds. We propose a novel data-driven range image compression algorithm, named RIDDLE (Range Image Deep DeLta Encoding). At its core is a deep model that predicts the next pixel value in a raster scanning order, based on contextual laser shots from both the current and past scans (represented as a 4D point cloud of spherical coordinates and time). The deltas between predictions and original values can then be compressed by entropy encoding. Evaluated on the Waymo Open Dataset and KITTI, our method demonstrates significant improvement in the compression rate (under the same distortion) compared to widely used point cloud and range image compression algorithms as well as recent deep methods.
Developing neural models that accurately understand objects in 3D point clouds is essential for the success of robotics and autonomous driving. However, arguably due to the higher-dimensional nature of the … Developing neural models that accurately understand objects in 3D point clouds is essential for the success of robotics and autonomous driving. However, arguably due to the higher-dimensional nature of the data (as compared to images), existing neural architectures exhibit a large variety in their designs, including but not limited to the views considered, the format of the neural features, and the neural operations used. Lack of a unified framework and interpretation makes it hard to put these designs in perspective, as well as systematically explore new ones. In this paper, we begin by proposing a unified framework of such, with the key idea being factorizing the neural networks into a series of view transforms and neural layers. We demonstrate that this modular framework can reproduce a variety of existing works while allowing a fair comparison of backbone designs. Then, we show how this framework can easily materialize into a concrete neural architecture search (NAS) space, allowing a principled NAS-for-3D exploration. In performing evolutionary NAS on the 3D object detection task on the Waymo Open Dataset, not only do we outperform the state-of-the-art models, but also report the interesting finding that NAS tends to discover the same macro-level architecture concept for both the vehicle and pedestrian classes.
Learning-based perception and prediction modules in modern autonomous driving systems typically rely on expensive human annotation and are designed to perceive only a handful of predefined object categories. This closed-set … Learning-based perception and prediction modules in modern autonomous driving systems typically rely on expensive human annotation and are designed to perceive only a handful of predefined object categories. This closed-set paradigm is insufficient for the safety-critical autonomous driving task, where the autonomous vehicle needs to process arbitrarily many types of traffic participants and their motion behaviors in a highly dynamic world. To address this difficulty, this paper pioneers a novel and challenging direction, i.e., training perception and prediction models to understand open-set moving objects, with no human supervision. Our proposed framework uses self-learned flow to trigger an automated meta labeling pipeline to achieve automatic supervision. 3D detection experiments on the Waymo Open Dataset show that our method significantly outperforms classical unsupervised approaches and is even competitive to the counterpart with supervised scene flow. We further show that our approach generates highly promising results in open-set 3D detection and trajectory prediction, confirming its potential in closing the safety gap of fully supervised systems.
Semantic segmentation of LiDAR point clouds is an important task in autonomous driving. However, training deep models via conventional supervised methods requires large datasets which are costly to label. It … Semantic segmentation of LiDAR point clouds is an important task in autonomous driving. However, training deep models via conventional supervised methods requires large datasets which are costly to label. It is critical to have label-efficient segmentation approaches to scale up the model to new operational domains or to improve performance on rare cases. While most prior works focus on indoor scenes, we are one of the first to propose a label-efficient semantic segmentation pipeline for outdoor scenes with LiDAR point clouds. Our method co-designs an efficient labeling process with semi/weakly supervised learning and is applicable to nearly any 3D semantic segmentation backbones. Specifically, we leverage geometry patterns in outdoor scenes to have a heuristic pre-segmentation to reduce the manual labeling and jointly design the learning targets with the labeling process. In the learning step, we leverage prototype learning to get more descriptive point embeddings and use multi-scan distillation to exploit richer semantics from temporally aggregated point clouds to boost the performance of single-scan models. Evaluated on the SemanticKITTI and the nuScenes datasets, we show that our proposed method outperforms existing label-efficient methods. With extremely limited human annotations (e.g., 0.1% point labels), our proposed method is even highly competitive compared to the fully supervised counterpart with 100% labels.
Continued improvements in deep learning architectures have steadily advanced the overall performance of 3D object detectors to levels on par with humans for certain tasks and datasets, where the overall … Continued improvements in deep learning architectures have steadily advanced the overall performance of 3D object detectors to levels on par with humans for certain tasks and datasets, where the overall performance is mostly driven by common examples. However, even the best performing models suffer from the most naive mistakes when it comes to rare examples that do not appear frequently in the training data, such as vehicles with irregular geometries. Most studies in the long-tail literature focus on class-imbalanced classification problems with known imbalanced label counts per class, but they are not directly applicable to the intra-class long-tail examples in problems with large intra-class variations such as 3D object detection, where instances with the same class label can have drastically varied properties such as shapes and sizes. Other works propose to mitigate this problem using active learning based on the criteria of uncertainty, difficulty, or diversity. In this study, we identify a new conceptual dimension - rareness - to mine new data for improving the long-tail performance of models. We show that rareness, as opposed to difficulty, is the key to data-centric improvements for 3D detectors, since rareness is the result of a lack in data support while difficulty is related to the fundamental ambiguity in the problem. We propose a general and effective method to identify the rareness of objects based on density estimation in the feature space using flow models, and propose a principled cost-aware formulation for mining rare object tracks, which improves overall model performance, but more importantly - significantly improves the performance for rare objects (by 30.97\%
While multi-class 3D detectors are needed in many robotics applications, training them with fully labeled datasets can be expensive in labeling cost. An alternative approach is to have targeted single-class … While multi-class 3D detectors are needed in many robotics applications, training them with fully labeled datasets can be expensive in labeling cost. An alternative approach is to have targeted single-class labels on disjoint data samples. In this paper, we are interested in training a multi-class 3D object detection model, while using these single-class labeled data. We begin by detailing the unique stance of our "Single-Class Supervision" (SCS) setting with respect to related concepts such as partial supervision and semi supervision. Then, based on the case study of training the multi-class version of Range Sparse Net (RSN), we adapt a spectrum of algorithms -- from supervised learning to pseudo-labeling -- to fully exploit the properties of our SCS setting, and perform extensive ablation studies to identify the most effective algorithm and practice. Empirical experiments on the Waymo Open Dataset show that proper training under SCS can approach or match full supervision training while saving labeling costs.
Monocular image-based 3D perception has become an active research area in recent years owing to its applications in autonomous driving. Approaches to monocular 3D perception including detection and tracking, however, … Monocular image-based 3D perception has become an active research area in recent years owing to its applications in autonomous driving. Approaches to monocular 3D perception including detection and tracking, however, often yield inferior performance when compared to LiDAR-based techniques. Through systematic analysis, we identified that per-object depth estimation accuracy is a major factor bounding the performance. Motivated by this observation, we propose a multi-level fusion method that combines different representations (RGB and pseudo-LiDAR) and temporal information across multiple frames for objects (tracklets) to enhance per-object depth estimation. Our proposed fusion method achieves the state-of-the-art performance of per-object depth estimation on the Waymo Open Dataset, the KITTI detection dataset, and the KITTI MOT dataset. We further demonstrate that by simply replacing estimated depth with fusion-enhanced depth, we can achieve significant improvements in monocular 3D perception tasks, including detection and tracking.
2D-to-3D reconstruction is an ill-posed problem, yet humans are good at solving this problem due to their prior knowledge of the 3D world developed over years. Driven by this observation, … 2D-to-3D reconstruction is an ill-posed problem, yet humans are good at solving this problem due to their prior knowledge of the 3D world developed over years. Driven by this observation, we propose NeRDi, a single-view NeRF synthesis framework with general image priors from 2D diffusion models. Formulating single-view reconstruction as an image-conditioned 3D generation problem, we optimize the NeRF representations by minimizing a diffusion loss on its arbitrary view renderings with a pretrained image diffusion model under the input-view constraint. We leverage off-the-shelf vision-language models and introduce a two-section language guidance as conditioning inputs to the diffusion model. This is essentially helpful for improving multiview content coherence as it narrows down the general image prior conditioned on the semantic and visual features of the single-view input image. Additionally, we introduce a geometric loss based on estimated depth maps to regularize the underlying 3D geometry of the NeRF. Experimental results on the DTU MVS dataset show that our method can synthesize novel views with higher quality even compared to existing methods trained on this dataset. We also demonstrate our generalizability in zero-shot NeRF synthesis for in-the-wild images.
3D object detection is a key module for safety-critical robotics applications such as autonomous driving. For these applications, we care most about how the detections affect the ego-agent's behavior and … 3D object detection is a key module for safety-critical robotics applications such as autonomous driving. For these applications, we care most about how the detections affect the ego-agent's behavior and safety (the egocentric perspective). Intuitively, we seek more accurate descriptions of object geometry when it's more likely to interfere with the ego-agent's motion trajectory. However, current detection metrics, based on box Intersection-over-Union (IoU), are object-centric and aren't designed to capture the spatio-temporal relationship between objects and the ego-agent. To address this issue, we propose a new egocentric measure to evaluate 3D object detection, namely Support Distance Error (SDE). Our analysis based on SDE reveals that the egocentric detection quality is bounded by the coarse geometry of the bounding boxes. Given the insight that SDE would benefit from more accurate geometry descriptions, we propose to represent objects as amodal contours, specifically amodal star-shaped polygons, and devise a simple model, StarPoly, to predict such contours. Our experiments on the large-scale Waymo Open Dataset show that SDE better reflects the impact of detection quality on the ego-agent's safety compared to IoU; and the estimated contours from StarPoly consistently improve the egocentric detection quality over recent 3D object detectors.
As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where … As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where predicting individual object motion is not sufficient. Joint predictions of multiple objects are required for effective route planning. There has been a critical need for high-quality motion data that is rich in both interactions and annotation to develop motion planning models. In this work, we introduce the most diverse interactive motion dataset to our knowledge, and provide specific labels for interacting objects suitable for developing joint prediction models. With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways. It was collected by mining for interesting interactions between vehicles, pedestrians, and cyclists across six cities within the United States. We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent, and provide corresponding high definition 3D maps for each scene. Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models. Finally, we provide strong baseline models for individual-agent prediction and joint-prediction. We hope that this new large-scale interactive motion dataset will provide new opportunities for advancing motion forecasting models.
In autonomous driving, a LiDAR-based object detector should perform reliably at different geographic locations and under various weather conditions. While recent 3D detection research focuses on improving performance within a … In autonomous driving, a LiDAR-based object detector should perform reliably at different geographic locations and under various weather conditions. While recent 3D detection research focuses on improving performance within a single domain, our study reveals that the performance of modern detectors can drop drastically cross-domain. In this paper, we investigate unsupervised domain adaptation (UDA) for LiDAR-based 3D object detection. On the Waymo Domain Adaptation [49] dataset, we identify the deteriorating point cloud quality as the root cause of the performance drop. To address this issue, we present Semantic Point Generation (SPG), a general approach to enhance the reliability of LiDAR detectors against domain shifts. Specifically, SPG generates semantic points at the predicted fore-ground regions and faithfully recovers missing parts of the foreground objects, which are caused by phenomena such as occlusions, low reflectance, or weather interference. By merging the semantic points with the original points, we obtain an augmented point cloud, which can be directly consumed by modern LiDAR-based detectors. To validate the wide applicability of SPG, we experiment with two representative detectors, PointPillars [22] and PV-RCNN [45]. On the UDA task, SPG significantly improves both detectors across all object categories of interest and at all difficulty levels. SPG can also benefit object detection in the original domain. On the Waymo Open Dataset [49] and KITTI [17], SPG improves 3D detection results of these two methods across all categories. Combined with PV-RCNN [45], SPG achieves state-of-the-art 3D detection results on KITTI.
While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely underexplored, such as using machines to … While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely underexplored, such as using machines to automatically generate high-quality 3D labels. Existing 3D object detectors fail to satisfy the high-quality requirement for offboard uses due to the limited input and speed constraints. In this paper, we propose a novel offboard 3D object detection pipeline using point cloud sequence data. Observing that different frames capture complementary views of objects, we design the offboard detector to make use of the temporal points through both multi-frame object detection and novel objectcentric refinement models. Evaluated on the Waymo Open Dataset, our pipeline named 3D Auto Labeling shows significant gains compared to the state-of-the-art onboard detectors and our offboard baselines. Its performance is even on par with human labels verified through a human label study. Further experiments demonstrate the application of auto labels for semi-supervised learning and provide extensive analysis to validate various design choices.
In autonomous driving, a LiDAR-based object detector should perform reliably at different geographic locations and under various weather conditions. While recent 3D detection research focuses on improving performance within a … In autonomous driving, a LiDAR-based object detector should perform reliably at different geographic locations and under various weather conditions. While recent 3D detection research focuses on improving performance within a single domain, our study reveals that the performance of modern detectors can drop drastically cross-domain. In this paper, we investigate unsupervised domain adaptation (UDA) for LiDAR-based 3D object detection. On the Waymo Domain Adaptation dataset, we identify the deteriorating point cloud quality as the root cause of the performance drop. To address this issue, we present Semantic Point Generation (SPG), a general approach to enhance the reliability of LiDAR detectors against domain shifts. Specifically, SPG generates semantic points at the predicted foreground regions and faithfully recovers missing parts of the foreground objects, which are caused by phenomena such as occlusions, low reflectance or weather interference. By merging the semantic points with the original points, we obtain an augmented point cloud, which can be directly consumed by modern LiDAR-based detectors. To validate the wide applicability of SPG, we experiment with two representative detectors, PointPillars and PV-RCNN. On the UDA task, SPG significantly improves both detectors across all object categories of interest and at all difficulty levels. SPG can also benefit object detection in the original domain. On the Waymo Open Dataset and KITTI, SPG improves 3D detection results of these two methods across all categories. Combined with PV-RCNN, SPG achieves state-of-the-art 3D detection results on KITTI.
3D object detection is a key module for safety-critical robotics applications such as autonomous driving. For these applications, we care most about how the detections affect the ego-agent's behavior and … 3D object detection is a key module for safety-critical robotics applications such as autonomous driving. For these applications, we care most about how the detections affect the ego-agent's behavior and safety (the egocentric perspective). Intuitively, we seek more accurate descriptions of object geometry when it's more likely to interfere with the ego-agent's motion trajectory. However, current detection metrics, based on box Intersection-over-Union (IoU), are object-centric and aren't designed to capture the spatio-temporal relationship between objects and the ego-agent. To address this issue, we propose a new egocentric measure to evaluate 3D object detection, namely Support Distance Error (SDE). Our analysis based on SDE reveals that the egocentric detection quality is bounded by the coarse geometry of the bounding boxes. Given the insight that SDE would benefit from more accurate geometry descriptions, we propose to represent objects as amodal contours, specifically amodal star-shaped polygons, and devise a simple model, StarPoly, to predict such contours. Our experiments on the large-scale Waymo Open Dataset show that SDE better reflects the impact of detection quality on the ego-agent's safety compared to IoU; and the estimated contours from StarPoly consistently improve the egocentric detection quality over recent 3D object detectors.
As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where … As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where predicting individual object motion is not sufficient. Joint predictions of multiple objects are required for effective route planning. There has been a critical need for high-quality motion data that is rich in both interactions and annotation to develop motion planning models. In this work, we introduce the most diverse interactive motion dataset to our knowledge, and provide specific labels for interacting objects suitable for developing joint prediction models. With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways. It was collected by mining for interesting interactions between vehicles, pedestrians, and cyclists across six cities within the United States. We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent, and provide corresponding high definition 3D maps for each scene. Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models. Finally, we provide strong baseline models for individual-agent prediction and joint-prediction. We hope that this new large-scale interactive motion dataset will provide new opportunities for advancing motion forecasting models.
While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely under-explored, such as using machines to … While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely under-explored, such as using machines to automatically generate high-quality 3D labels. Existing 3D object detectors fail to satisfy the high-quality requirement for offboard uses due to the limited input and speed constraints. In this paper, we propose a novel offboard 3D object detection pipeline using point cloud sequence data. Observing that different frames capture complementary views of objects, we design the offboard detector to make use of the temporal points through both multi-frame object detection and novel object-centric refinement models. Evaluated on the Waymo Open Dataset, our pipeline named 3D Auto Labeling shows significant gains compared to the state-of-the-art onboard detectors and our offboard baselines. Its performance is even on par with human labels verified through a human label study. Further experiments demonstrate the application of auto labels for semi-supervised learning and provide extensive analysis to validate various design choices.
3D human pose estimation (HPE) in autonomous vehicles (AV) differs from other use cases in many factors, including the 3D resolution and range of data, absence of dense depth maps, … 3D human pose estimation (HPE) in autonomous vehicles (AV) differs from other use cases in many factors, including the 3D resolution and range of data, absence of dense depth maps, failure modes for LiDAR, relative location between the camera and LiDAR, and a high bar for estimation accuracy. Data collected for other use cases (such as virtual reality, gaming, and animation) may therefore not be usable for AV applications. This necessitates the collection and annotation of a large amount of 3D data for HPE in AV, which is time-consuming and expensive. In this paper, we propose one of the first approaches to alleviate this problem in the AV setting. Specifically, we propose a multi-modal approach which uses 2D labels on RGB images as weak supervision to perform 3D HPE. The proposed multi-modal architecture incorporates LiDAR and camera inputs with an auxiliary segmentation branch. On the Waymo Open Dataset, our approach achieves a 22% relative improvement over camera-only 2D HPE baseline, and 6% improvement over LiDAR-only model. Finally, careful ablation studies and parts based analysis illustrate the advantages of each of our contributions.
3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input … 3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input (e.g. VoteNet). However, point cloud data have inherent limitations. They are sparse, lack color information and often suffer from sensor noise. Images, on the other hand, have high resolution and rich texture. Thus they can complement the 3D geometry provided by point clouds. Yet how to effectively use image information to assist point cloud based detection is still an open question. In this work, we build on top of VoteNet and propose a 3D detection architecture called ImVoteNet specialized for RGB-D scenes. ImVoteNet is based on fusing 2D votes in images and 3D votes in point clouds. Compared to prior work on multi-modal detection, we explicitly extract both geometric and semantic features from the 2D images. We leverage camera parameters to lift these features to 3D. To improve the synergy of 2D-3D feature fusion, we also propose a multi-tower training scheme. We validate our model on the challenging SUN RGB-D dataset, advancing state-of-the-art results by 5.7 mAP. We also provide rich ablation studies to analyze the contribution of each design choice.
3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input … 3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input (e.g. VoteNet). However, point cloud data have inherent limitations. They are sparse, lack color information and often suffer from sensor noise. Images, on the other hand, have high resolution and rich texture. Thus they can complement the 3D geometry provided by point clouds. Yet how to effectively use image information to assist point cloud based detection is still an open question. In this work, we build on top of VoteNet and propose a 3D detection architecture called ImVoteNet specialized for RGB-D scenes. ImVoteNet is based on fusing 2D votes in images and 3D votes in point clouds. Compared to prior work on multi-modal detection, we explicitly extract both geometric and semantic features from the 2D images. We leverage camera parameters to lift these features to 3D. To improve the synergy of 2D-3D feature fusion, we also propose a multi-tower training scheme. We validate our model on the challenging SUN RGB-D dataset, advancing state-of-the-art results by 5.7 mAP. We also provide rich ablation studies to analyze the contribution of each design choice.
We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid. … We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid. Key to our approach is an object-centric canonical 3D coordinate system into which views can be lifted, without explicit camera pose estimation, and then combined -- in a manner that can accommodate a variable number of views and is view order independent. We show that computing a symmetry-aware mapping from pixels to the canonical coordinate system allows us to better propagate information to unseen regions, as well as to robustly overcome pose ambiguities during inference. Our aggregate representation enables us to perform 3D inference tasks like volumetric reconstruction and novel view synthesis, and we use these tasks to demonstrate the benefits of our aggregation approach as compared to implicit or camera-centric alternatives.
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance … Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been instrumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -- demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning.
3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input … 3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input (e.g. VoteNet). However, point cloud data have inherent limitations. They are sparse, lack color information and often suffer from sensor noise. Images, on the other hand, have high resolution and rich texture. Thus they can complement the 3D geometry provided by point clouds. Yet how to effectively use image information to assist point cloud based detection is still an open question. In this work, we build on top of VoteNet and propose a 3D detection architecture called ImVoteNet specialized for RGB-D scenes. ImVoteNet is based on fusing 2D votes in images and 3D votes in point clouds. Compared to prior work on multi-modal detection, we explicitly extract both geometric and semantic features from the 2D images. We leverage camera parameters to lift these features to 3D. To improve the synergy of 2D-3D feature fusion, we also propose a multi-tower training scheme. We validate our model on the challenging SUN RGB-D dataset, advancing state-of-the-art results by 5.7 mAP. We also provide rich ablation studies to analyze the contribution of each design choice.
Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to … Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data - samples from 2D manifolds in 3D space - we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images.
We present Kernel Point Convolution (KPConv), a new design of point convolution, i.e. that operates on point clouds without any intermediate representation. The convolution weights of KPConv are located in … We present Kernel Point Convolution (KPConv), a new design of point convolution, i.e. that operates on point clouds without any intermediate representation. The convolution weights of KPConv are located in Euclidean space by kernel points, and applied to the input points close to them. Its capacity to use any number of kernel points gives KPConv more flexibility than fixed grid convolutions. Furthermore, these locations are continuous in space and can be learned by the network. Therefore, KPConv can be extended to deformable convolutions that learn to adapt kernel points to local geometry. Thanks to a regular subsampling strategy, KPConv is also efficient and robust to varying densities. Whether they use deformable KPConv for complex tasks, or rigid KPconv for simpler tasks, our networks outperform state-of-the-art classification and segmentation approaches on several datasets. We also offer ablation studies and visualizations to provide understanding of what has been learned by KPConv and to validate the descriptive power of deformable KPConv.
Many applications in robotics and human-computer interaction can benefit from understanding 3D motion of points in a dynamic environment, widely noted as scene flow. While most previous methods focus on … Many applications in robotics and human-computer interaction can benefit from understanding 3D motion of points in a dynamic environment, widely noted as scene flow. While most previous methods focus on stereo and RGB-D images as input, few try to estimate scene flow directly from point clouds. In this work, we propose a novel deep neural network named FlowNet3D that learns scene flow from point clouds in an end-to-end fashion. Our network simultaneously learns deep hierarchical features of point clouds and flow embeddings that represent point motions, supported by two newly proposed learning layers for point sets. We evaluate the network on both challenging synthetic data from FlyingThings3D and real Lidar scans from KITTI. Trained on synthetic data only, our network successfully generalizes to real scans, outperforming various baselines and showing competitive results to the prior art. We also demonstrate two applications of our scene flow output (scan registration and motion segmentation) to show its potential wide use cases.
Deep neural networks are known to be vulnerable to adversarial examples which are carefully crafted instances to cause the models to make wrong predictions. While adversarial examples for 2D images … Deep neural networks are known to be vulnerable to adversarial examples which are carefully crafted instances to cause the models to make wrong predictions. While adversarial examples for 2D images and CNNs have been extensively studied, less attention has been paid to 3D data such as point clouds. Given many safety-critical 3D applications such as autonomous driving, it is important to study how adversarial point clouds could affect current deep 3D models. In this work, we propose several novel algorithms to craft adversarial point clouds against PointNet, a widely used deep neural network for point cloud processing. Our algorithms work in two ways: adversarial point perturbation and adversarial point generation. For point perturbation, we shift existing points negligibly. For point generation, we generate either a set of independent and scattered points or a small number (1-3) of point clusters with meaningful shapes such as balls and airplanes which could be hidden in the human psyche. In addition, we formulate six perturbation measurement metrics tailored to the attacks in point clouds and conduct extensive experiments to evaluate the proposed algorithms on the ModelNet40 3D shape classification dataset. Overall, our attack algorithms achieve a success rate higher than 99% for all targeted attacks.
Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to … Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data -- samples from 2D manifolds in 3D space -- we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images.
We present Kernel Point Convolution (KPConv), a new design of point convolution, i.e. that operates on point clouds without any intermediate representation. The convolution weights of KPConv are located in … We present Kernel Point Convolution (KPConv), a new design of point convolution, i.e. that operates on point clouds without any intermediate representation. The convolution weights of KPConv are located in Euclidean space by kernel points, and applied to the input points close to them. Its capacity to use any number of kernel points gives KPConv more flexibility than fixed grid convolutions. Furthermore, these locations are continuous in space and can be learned by the network. Therefore, KPConv can be extended to deformable convolutions that learn to adapt kernel points to local geometry. Thanks to a regular subsampling strategy, KPConv is also efficient and robust to varying densities. Whether they use deformable KPConv for complex tasks, or rigid KPconv for simpler tasks, our networks outperform state-of-the-art classification and segmentation approaches on several datasets. We also offer ablation studies and visualizations to provide understanding of what has been learned by KPConv and to validate the descriptive power of deformable KPConv.
Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to … Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data -- samples from 2D manifolds in 3D space -- we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images.
In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D … In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability.
Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, … Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds, which well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.
Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To interface a highly sparse LiDAR … Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To interface a highly sparse LiDAR point cloud with a region proposal network (RPN), most existing efforts have focused on hand-crafted feature representations, for example, a bird's eye view projection. In this work, we remove the need of manual feature engineering for 3D point clouds and propose VoxelNet, a generic 3D detection network that unifies feature extraction and bounding box prediction into a single stage, end-to-end trainable deep network. Specifically, VoxelNet divides a point cloud into equally spaced 3D voxels and transforms a group of points within each voxel into a unified feature representation through the newly introduced voxel feature encoding (VFE) layer. In this way, the point cloud is encoded as a descriptive volumetric representation, which is then connected to a RPN to generate detections. Experiments on the KITTI car detection benchmark show that VoxelNet outperforms the state-of-the-art LiDAR based 3D detection methods by a large margin. Furthermore, our network learns an effective discriminative representation of objects with various geometries, leading to encouraging results in 3D detection of pedestrians and cyclists, based on only LiDAR.
The research community has increasing interest in autonomous driving research, despite the resource intensity of obtaining representative real world data. Existing self-driving datasets are limited in the scale and variation … The research community has increasing interest in autonomous driving research, despite the resource intensity of obtaining representative real world data. Existing self-driving datasets are limited in the scale and variation of the environments they capture, even though generalization within and between operating regions is crucial to the over-all viability of the technology. In an effort to help align the research community's contributions with real-world self-driving problems, we introduce a new large scale, high quality, diverse dataset. Our new dataset consists of 1150 scenes that each span 20 seconds, consisting of well synchronized and calibrated high quality LiDAR and camera data captured across a range of urban and suburban geographies. It is 15x more diverse than the largest camera+LiDAR dataset available based on our proposed diversity metric. We exhaustively annotated this data with 2D (camera image) and 3D (LiDAR) bounding boxes, with consistent identifiers across frames. Finally, we provide strong baselines for 2D as well as 3D detection and tracking tasks. We further study the effects of dataset size and generalization across geographies on 3D detection methods. Find data, code and more up-to-date information at http://www.waymo.com/open.
3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of … 3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category recognition, recovering full 3D shapes from view-based 2.5D depth maps is also a critical part of visual understanding. To this end, we propose to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network. Our model, 3D ShapeNets, learns the distribution of complex 3D shapes across different object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional part representation automatically. It naturally supports joint object recognition and shape completion from 2.5D depth maps, and it enables active object recognition through view planning. To train our 3D deep learning model, we construct ModelNet - a large-scale 3D CAD model dataset. Extensive experiments show that our 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.
Object detection in point clouds is an important aspect of many robotics applications such as autonomous driving. In this paper, we consider the problem of encoding a point cloud into … Object detection in point clouds is an important aspect of many robotics applications such as autonomous driving. In this paper, we consider the problem of encoding a point cloud into a format appropriate for a downstream detection pipeline. Recent literature suggests two types of encoders; fixed encoders tend to be fast but sacrifice accuracy, while encoders that are learned from data are more accurate, but slower. In this work, we propose PointPillars, a novel encoder which utilizes PointNets to learn a representation of point clouds organized in vertical columns (pillars). While the encoded features can be used with any standard 2D convolutional detection architecture, we further propose a lean downstream network. Extensive experimentation shows that PointPillars outperforms previous encoders with respect to both speed and accuracy by a large margin. Despite only using lidar, our full detection pipeline significantly outperforms the state of the art, even among fusion methods, with respect to both the 3D and bird's eye view KITTI benchmarks. This detection performance is achieved while running at 62 Hz: a 2 - 4 fold runtime improvement. A faster version of our method matches the state of the art at 105 Hz. These benchmarks suggest that PointPillars is an appropriate encoding for object detection in point clouds.
In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D … In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability.
A key requirement for leveraging supervised deep learning methods is the availability of large, labeled datasets. Unfortunately, in the context of RGB-D scene understanding, very little data is available - … A key requirement for leveraging supervised deep learning methods is the availability of large, labeled datasets. Unfortunately, in the context of RGB-D scene understanding, very little data is available - current datasets cover a small range of scene views and have limited semantic annotations. To address this issue, we introduce ScanNet, an RGB-D video dataset containing 2.5M views in 1513 scenes annotated with 3D camera poses, surface reconstructions, and semantic segmentations. To collect this data, we designed an easy-to-use and scalable RGB-D capture system that includes automated surface reconstruction and crowd-sourced semantic annotation.We show that using this data helps achieve state-of-the-art performance on several 3D scene understanding tasks, including 3D object classification, semantic voxel labeling, and CAD model retrieval.
We focus on the task of amodal 3D object detection in RGB-D images, which aims to produce a 3D bounding box of an object in metric form at its full … We focus on the task of amodal 3D object detection in RGB-D images, which aims to produce a 3D bounding box of an object in metric form at its full extent. We introduce Deep Sliding Shapes, a 3D ConvNet formulation that takes a 3D volumetric scene from a RGB-D image as input and outputs 3D object bounding boxes. In our approach, we propose the first 3D Region Proposal Network (RPN) to learn objectness from geometric shapes and the first joint Object Recognition Network (ORN) to extract geometric features in 3D and color features in 2D. In particular, we handle objects of various sizes by training an amodal RPN at two different scales and an ORN to regress 3D bounding boxes. Experiments show that our algorithm outperforms the state-of-the-art by 13.8 in mAP and is 200× faster than the original Sliding Shapes.
Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced … Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.
In this paper, we present LaserNet, a computationally efficient method for 3D object detection from LiDAR data for autonomous driving. The efficiency results from processing LiDAR data in the native … In this paper, we present LaserNet, a computationally efficient method for 3D object detection from LiDAR data for autonomous driving. The efficiency results from processing LiDAR data in the native range view of the sensor, where the input data is naturally compact. Operating in the range view involves well known challenges for learning, including occlusion and scale variation, but it also provides contextual information based on how the sensor data was captured. Our approach uses a fully convolutional network to predict a multimodal distribution over 3D boxes for each point and then it efficiently fuses these distributions to generate a prediction for each object. Experiments show that modeling each detection as a distribution rather than a single deterministic box leads to better overall detection performance. Benchmark results show that this approach has significantly lower runtime than other recent detectors and that it achieves state-of-the-art performance when compared on a large dataset that has enough data to overcome the challenges of training on the range view.
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly … Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
In this paper, we propose PointRCNN for 3D object detection from raw point cloud. The whole framework is composed of two stages: stage-1 for the bottom-up 3D proposal generation and … In this paper, we propose PointRCNN for 3D object detection from raw point cloud. The whole framework is composed of two stages: stage-1 for the bottom-up 3D proposal generation and stage-2 for refining proposals in the canonical coordinates to obtain the final detection results. Instead of generating proposals from RGB image or projecting point cloud to bird's view or voxels as previous methods do, our stage-1 sub-network directly generates a small number of high-quality 3D proposals from point cloud in a bottom-up manner via segmenting the point cloud of the whole scene into foreground points and background. The stage-2 sub-network transforms the pooled points of each proposal to canonical coordinates to learn better local spatial features, which is combined with global semantic features of each point learned in stage-1 for accurate box refinement and confidence prediction. Extensive experiments on the 3D detection benchmark of KITTI dataset show that our proposed architecture outperforms state-of-the-art methods with remarkable margins by using only point cloud as input. The code is available at https://github.com/sshaoshuai/PointRCNN.
Robust detection and tracking of objects is crucial for the deployment of autonomous vehicle technology. Image based benchmark datasets have driven development in computer vision tasks such as object detection, … Robust detection and tracking of objects is crucial for the deployment of autonomous vehicle technology. Image based benchmark datasets have driven development in computer vision tasks such as object detection, tracking and segmentation of agents in the environment. Most autonomous vehicles, however, carry a combination of cameras and range sensors such as lidar and radar. As machine learning based methods for detection and tracking become more prevalent, there is a need to train and evaluate such methods on datasets containing range sensor data along with images. In this work we present nuTonomy scenes (nuScenes), the first dataset to carry the full autonomous vehicle sensor suite: 6 cameras, 5 radars and 1 lidar, all with full 360 degree field of view. nuScenes comprises 1000 scenes, each 20s long and fully annotated with 3D bounding boxes for 23 classes and 8 attributes. It has 7x as many annotations and 100x as many images as the pioneering KITTI dataset. We define novel 3D detection and tracking metrics. We also provide careful dataset analysis as well as baselines for lidar and image based detection and tracking. Data, development kit and more information are available online.
Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to … Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data - samples from 2D manifolds in 3D space - we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images.
Convolutional networks are the de-facto standard for analyzing spatio-temporal data such as images, videos, and 3D shapes. Whilst some of this data is naturally dense (e.g., photos), many other data … Convolutional networks are the de-facto standard for analyzing spatio-temporal data such as images, videos, and 3D shapes. Whilst some of this data is naturally dense (e.g., photos), many other data sources are inherently sparse. Examples include 3D point clouds that were obtained using a LiDAR scanner or RGB-D camera. Standard "dense" implementations of convolutional networks are very inefficient when applied on such sparse data. We introduce new sparse convolutional operations that are designed to process spatially-sparse data more efficiently, and use them to develop spatially-sparse convolutional networks. We demonstrate the strong performance of the resulting models, called submanifold sparse convolutional networks (SS-CNs), on two tasks involving semantic segmentation of 3D point clouds. In particular, our models outperform all prior state-of-the-art on the test set of a recent semantic segmentation competition.
Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. While hand-designed features on … Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. While hand-designed features on point clouds have long been proposed in graphics and vision, however, the recent overwhelming success of convolutional neural networks (CNNs) for image analysis suggests the value of adapting insight from CNN to the point cloud world. Point clouds inherently lack topological information, so designing a model to recover topology can enrich the representation power of point clouds. To this end, we propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point clouds, including classification and segmentation. EdgeConv acts on graphs dynamically computed in each layer of the network. It is differentiable and can be plugged into existing architectures. Compared to existing modules operating in extrinsic space or treating each point independently, EdgeConv has several appealing properties: It incorporates local neighborhood information; it can be stacked applied to learn global shape properties; and in multi-layer systems affinity in feature space captures semantic characteristics over potentially long distances in the original embedding. We show the performance of our model on standard benchmarks, including ModelNet40, ShapeNetPart, and S3DIS.
The highest accuracy object detectors to date are based on a two-stage approach popularized by R-CNN, where a classifier is applied to a sparse set of candidate object locations. In … The highest accuracy object detectors to date are based on a two-stage approach popularized by R-CNN, where a classifier is applied to a sparse set of candidate object locations. In contrast, one-stage detectors that are applied over a regular, dense sampling of possible object locations have the potential to be faster and simpler, but have trailed the accuracy of two-stage detectors thus far. In this paper, we investigate why this is the case. We discover that the extreme foreground-background class imbalance encountered during training of dense detectors is the central cause. We propose to address this class imbalance by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples. Our novel Focal Loss focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training. To evaluate the effectiveness of our loss, we design and train a simple dense detector we call RetinaNet. Our results show that when trained with the focal loss, RetinaNet is able to match the speed of previous one-stage detectors while surpassing the accuracy of all existing state-of-the-art two-stage detectors.
This paper aims at high-accuracy 3D object detection in autonomous driving scenario. We propose Multi-View 3D networks (MV3D), a sensory-fusion framework that takes both LIDAR point cloud and RGB images … This paper aims at high-accuracy 3D object detection in autonomous driving scenario. We propose Multi-View 3D networks (MV3D), a sensory-fusion framework that takes both LIDAR point cloud and RGB images as input and predicts oriented 3D bounding boxes. We encode the sparse 3D point cloud with a compact multi-view representation. The network is composed of two subnetworks: one for 3D object proposal generation and another for multi-view feature fusion. The proposal network generates 3D candidate boxes efficiently from the birds eye view representation of 3D point cloud. We design a deep fusion scheme to combine region-wise features from multiple views and enable interactions between intermediate layers of different paths. Experiments on the challenging KITTI benchmark show that our approach outperforms the state-of-the-art by around 25% and 30% AP on the tasks of 3D localization and 3D detection. In addition, for 2D detection, our approach obtains 14.9% higher AP than the state-of-the-art on the hard data among the LIDAR-based methods.
We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Speed is critical as detection is a necessary component for safety. Existing … We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Speed is critical as detection is a necessary component for safety. Existing approaches are, however, expensive in computation due to high dimensionality of point clouds. We utilize the 3D data more efficiently by representing the scene from the Bird's Eye View (BEV), and propose PIXOR, a proposal-free, single-stage detector that outputs oriented 3D object estimates decoded from pixel-wise neural network predictions. The input representation, network architecture, and model optimization are specially designed to balance high accuracy and real-time efficiency. We validate PIXOR on two datasets: the KITTI BEV object detection benchmark, and a large-scale 3D vehicle detection benchmark. In both datasets we show that the proposed detector surpasses other state-of-the-art methods notably in terms of Average Precision (AP), while still runs at 10 FPS.
We propose a novel deep learning-based framework to tackle the challenge of semantic segmentation of large-scale point clouds of millions of points. We argue that the organization of 3D point … We propose a novel deep learning-based framework to tackle the challenge of semantic segmentation of large-scale point clouds of millions of points. We argue that the organization of 3D point clouds can be efficiently captured by a structure called superpoint graph (SPG), derived from a partition of the scanned scene into geometrically homogeneous elements. SPGs offer a compact yet rich representation of contextual relationships between object parts, which is then exploited by a graph convolutional network. Our framework sets a new state of the art for segmenting outdoor LiDAR scans (+11.9 and +8.8 mIoU points for both Semantic3D test sets), as well as indoor scans (+12.4 mIoU points for the S3DIS dataset).
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN), for accurate 3D object detection from point clouds. Our proposed method deeply integrates both 3D voxel Convolutional … We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN), for accurate 3D object detection from point clouds. Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction to learn more discriminative point cloud features. It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks. Specifically, the proposed framework summarizes the 3D scene with a 3D voxel CNN into a small set of keypoints via a novel voxel set abstraction module to save follow-up computations and also to encode representative scene features. Given the high-quality 3D proposals generated by the voxel CNN, the RoI-grid pooling is proposed to abstract proposal-specific features from the keypoints to the RoI-grid points via keypoint set abstraction. Compared with conventional pooling operations, the RoI-grid feature points encode much richer context information for accurately estimating object confidences and locations. Extensive experiments on both the KITTI dataset and the Waymo Open dataset show that our proposed PV-RCNN surpasses state-of-the-art 3D detection methods with remarkable margins.
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks … In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level … Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
Semantic scene understanding is important for various applications. In particular, self-driving cars need a fine-grained understanding of the surfaces and objects in their vicinity. Light detection and ranging (LiDAR) provides … Semantic scene understanding is important for various applications. In particular, self-driving cars need a fine-grained understanding of the surfaces and objects in their vicinity. Light detection and ranging (LiDAR) provides precise geometric information about the environment and is thus a part of the sensor suites of almost all self-driving cars. Despite the relevance of semantic scene understanding for this application, there is a lack of a large dataset for this task which is based on an automotive LiDAR. In this paper, we introduce a large dataset to propel research on laser-based semantic segmentation. We annotated all sequences of the KITTI Vision Odometry Benchmark and provide dense point-wise annotations for the complete 360-degree field-of-view of the employed automotive LiDAR. We propose three benchmark tasks based on this dataset: (i) semantic segmentation of point clouds using a single scan, (ii) semantic segmentation using multiple past scans, and (iii) semantic scene completion, which requires to anticipate the semantic scene in the future. We provide baseline experiments and show that there is a need for more sophisticated models to efficiently tackle these tasks. Our dataset opens the door for the development of more advanced methods, but also provides plentiful data to investigate new research directions.
In this paper, we propose a graph neural network to detect objects from a LiDAR point cloud. Towards this end, we encode the point cloud efficiently in a fixed radius … In this paper, we propose a graph neural network to detect objects from a LiDAR point cloud. Towards this end, we encode the point cloud efficiently in a fixed radius near-neighbors graph. We design a graph neural network, named Point-GNN, to predict the category and shape of the object that each vertex in the graph belongs to. In Point-GNN, we propose an auto-registration mechanism to reduce translation variance, and also design a box merging and scoring operation to combine detections from multiple vertices accurately. Our experiments on the KITTI benchmark show the proposed approach achieves leading accuracy using the point cloud alone and can even surpass fusion-based algorithms. Our results demonstrate the potential of using the graph neural network as a new approach for 3D object detection. The code is available at https://github.com/WeijingShi/Point-GNN.
The detection of 3D objects from LiDAR data is a critical component in most autonomous driving systems. Safe, high speed driving needs larger detection ranges, which are enabled by new … The detection of 3D objects from LiDAR data is a critical component in most autonomous driving systems. Safe, high speed driving needs larger detection ranges, which are enabled by new LiDARs. These larger detection ranges require more efficient and accurate detection models. Towards this goal, we propose Range Sparse Net (RSN) – a simple, efficient, and accurate 3D object detector – in order to tackle real time 3D object detection in this extended detection regime. RSN predicts foreground points from range images and applies sparse convolutions on the selected foreground points to detect objects. The lightweight 2D convolutions on dense range images results in significantly fewer selected foreground points, thus enabling the later sparse convolutions in RSN to efficiently operate. Combining features from the range image further enhance detection accuracy. RSN runs at more than 60 frames per second on a 150m × 150m detection region on Waymo Open Dataset (WOD) while being more accurate than previously published detectors. As of 11/2020, RSN is ranked first in the WOD leaderboard based on the APH/LEVEL_1 metrics for LiDAR-based pedestrian and vehicle detection, while being several times faster than alternatives.
A key requirement for leveraging supervised deep learning methods is the availability of large, labeled datasets. Unfortunately, in the context of RGB-D scene understanding, very little data is available -- … A key requirement for leveraging supervised deep learning methods is the availability of large, labeled datasets. Unfortunately, in the context of RGB-D scene understanding, very little data is available -- current datasets cover a small range of scene views and have limited semantic annotations. To address this issue, we introduce ScanNet, an RGB-D video dataset containing 2.5M views in 1513 scenes annotated with 3D camera poses, surface reconstructions, and semantic segmentations. To collect this data, we designed an easy-to-use and scalable RGB-D capture system that includes automated surface reconstruction and crowdsourced semantic annotation. We show that using this data helps achieve state-of-the-art performance on several 3D scene understanding tasks, including 3D object classification, semantic voxel labeling, and CAD model retrieval. The dataset is freely available at http://www.scan-net.org.
Prevalence of voxel-based 3D single-stage detectors contrast with underexplored point-based methods. In this paper, we present a lightweight point-based 3D single stage object detector 3DSSD to achieve decent balance of … Prevalence of voxel-based 3D single-stage detectors contrast with underexplored point-based methods. In this paper, we present a lightweight point-based 3D single stage object detector 3DSSD to achieve decent balance of accuracy and efficiency. In this paradigm, all upsampling layers and the refinement stage, which are indispensable in all existing point-based methods, are abandoned. We instead propose a fusion sampling strategy in downsampling process to make detection on less representative points feasible. A delicate box prediction network, including a candidate generation layer and an anchor-free regression head with a 3D center-ness assignment strategy, is developed to meet the demand of high accuracy and speed. Our 3DSSD paradigm is an elegant single-stage anchor-free one. We evaluate it on widely used KITTI dataset and more challenging nuScenes dataset. Our method outperforms all state-of-the-art voxel-based single-stage methods by a large margin, and even yields comparable performance with two-stage point-based methods, with amazing inference speed of 25+ FPS, 2x faster than former state-of-the-art point-based methods.
Recent deep networks that directly handle points in a point set, e.g., PointNet, have been state-of-the-art for supervised learning tasks on point clouds such as classification and segmentation. In this … Recent deep networks that directly handle points in a point set, e.g., PointNet, have been state-of-the-art for supervised learning tasks on point clouds such as classification and segmentation. In this work, a novel end-to-end deep auto-encoder is proposed to address unsupervised learning challenges on point clouds. On the encoder side, a graph-based enhancement is enforced to promote local structures on top of PointNet. Then, a novel folding-based decoder deforms a canonical 2D grid onto the underlying 3D object surface of a point cloud, achieving low reconstruction errors even for objects with delicate structures. The proposed decoder only uses about 7% parameters of a decoder with fully-connected neural networks, yet leads to a more discriminative representation that achieves higher linear SVM classification accuracy than the benchmark. In addition, the proposed decoder structure is shown, in theory, to be a generic architecture that is able to reconstruct an arbitrary point cloud from a 2D grid. Our code is available at http://www.merl.com/research/license#FoldingNet.
Standard convolutional neural networks assume a grid structured input is available and exploit discrete convolutions as their fundamental building blocks. This limits their applicability to many real-world applications. In this … Standard convolutional neural networks assume a grid structured input is available and exploit discrete convolutions as their fundamental building blocks. This limits their applicability to many real-world applications. In this paper we propose Parametric Continuous Convolution, a new learnable operator that operates over non-grid structured data. The key idea is to exploit parameterized kernel functions that span the full continuous vector space. This generalization allows us to learn over arbitrary data structures as long as their support relationship is computable. Our experiments show significant improvement over the state-of-the-art in point cloud segmentation of indoor and outdoor scenes, and lidar motion estimation of driving scenes.
We present a network architecture for processing point clouds that directly operates on a collection of points represented as a sparse set of samples in a high-dimensional lattice. Naively applying … We present a network architecture for processing point clouds that directly operates on a collection of points represented as a sparse set of samples in a high-dimensional lattice. Naively applying convolutions on this lattice scales poorly, both in terms of memory and computational cost, as the size of the lattice increases. Instead, our network uses sparse bilateral convolutional layers as building blocks. These layers maintain efficiency by using indexing structures to apply convolutions only on occupied parts of the lattice, and allow flexible specifications of the lattice structure enabling hierarchical and spatially-aware feature learning, as well as joint 2D-3D reasoning. Both point-based and image-based representations can be easily incorporated in a network with such layers and the resulting model can be trained in an end-to-end manner. We present results on 3D segmentation tasks where our approach outperforms existing state-of-the-art techniques.
This paper proposes a computationally efficient approach to detecting objects natively in 3D point clouds using convolutional neural networks (CNNs). In particular, this is achieved by leveraging a feature-centric voting … This paper proposes a computationally efficient approach to detecting objects natively in 3D point clouds using convolutional neural networks (CNNs). In particular, this is achieved by leveraging a feature-centric voting scheme to implement novel convolutional layers which explicitly exploit the sparsity encountered in the input. To this end, we examine the trade-off between accuracy and speed for different architectures and additionally propose to use an L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> penalty on the filter activations to further encourage sparsity in the intermediate representations. To the best of our knowledge, this is the first work to propose sparse convolutional layers and L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> regularisation for efficient large-scale processing of 3D data. We demonstrate the efficacy of our approach on the KITTI object detection benchmark and show that Vote3Deep models with as few as three layers outperform the previous state of the art in both laser and laser-vision based approaches by margins of up to 40% while remaining highly competitive in terms of processing time.
Recent work on 3D object detection advocates point cloud voxelization in birds-eye view, where objects preserve their physical dimensions and are naturally separable. When represented in this view, however, point … Recent work on 3D object detection advocates point cloud voxelization in birds-eye view, where objects preserve their physical dimensions and are naturally separable. When represented in this view, however, point clouds are sparse and have highly variable point density, which may cause detectors difficulties in detecting distant or small objects (pedestrians, traffic signs, etc.). On the other hand, perspective view provides dense observations, which could allow more favorable feature encoding for such cases. In this paper, we aim to synergize the birds-eye view and the perspective view and propose a novel end-to-end multi-view fusion (MVF) algorithm, which can effectively learn to utilize the complementary information from both. Specifically, we introduce dynamic voxelization, which has four merits compared to existing voxelization methods, i) removing the need of pre-allocating a tensor with fixed size; ii) overcoming the information loss due to stochastic point/voxel dropout; iii) yielding deterministic voxel embeddings and more stable detection outcomes; iv) establishing the bi-directional relationship between points and voxels, which potentially lays a natural foundation for cross-view feature fusion. By employing dynamic voxelization, the proposed feature fusion architecture enables each point to learn to fuse context information from different views. MVF operates on points and can be naturally extended to other approaches using LiDAR point clouds. We evaluate our MVF model extensively on the newly released Waymo Open Dataset and on the KITTI dataset and demonstrate that it significantly improves detection accuracy over the comparable single-view PointPillars baseline.
We present a new deep learning architecture (called Kdnetwork) that is designed for 3D model recognition tasks and works with unstructured point clouds. The new architecture performs multiplicative transformations and … We present a new deep learning architecture (called Kdnetwork) that is designed for 3D model recognition tasks and works with unstructured point clouds. The new architecture performs multiplicative transformations and shares parameters of these transformations according to the subdivisions of the point clouds imposed onto them by kdtrees. Unlike the currently dominant convolutional architectures that usually require rasterization on uniform twodimensional or three-dimensional grids, Kd-networks do not rely on such grids in any way and therefore avoid poor scaling behavior. In a series of experiments with popular shape recognition benchmarks, Kd-networks demonstrate competitive performance in a number of shape recognition tasks such as shape classification, shape retrieval and shape part segmentation.
This paper presents a novel 3D object detection framework that processes LiDAR data directly on its native representation: range images. Benefiting from the compactness of range images, 2D convolutions can … This paper presents a novel 3D object detection framework that processes LiDAR data directly on its native representation: range images. Benefiting from the compactness of range images, 2D convolutions can efficiently process dense LiDAR data of a scene. To overcome scale sensitivity in this perspective view, a novel range-conditioned dilation (RCD) layer is proposed to dynamically adjust a continuous dilation rate as a function of the measured range. Furthermore, localized soft range gating combined with a 3D box-refinement stage improves robustness in occluded areas, and produces overall more accurate bounding box predictions. On the public large-scale Waymo Open Dataset, our method sets a new baseline for range-based 3D detection, outperforming multiview and voxel-based methods over all ranges with unparalleled performance at long range detection.
While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely underexplored, such as using machines to … While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely underexplored, such as using machines to automatically generate high-quality 3D labels. Existing 3D object detectors fail to satisfy the high-quality requirement for offboard uses due to the limited input and speed constraints. In this paper, we propose a novel offboard 3D object detection pipeline using point cloud sequence data. Observing that different frames capture complementary views of objects, we design the offboard detector to make use of the temporal points through both multi-frame object detection and novel objectcentric refinement models. Evaluated on the Waymo Open Dataset, our pipeline named 3D Auto Labeling shows significant gains compared to the state-of-the-art onboard detectors and our offboard baselines. Its performance is even on par with human labels verified through a human label study. Further experiments demonstrate the application of auto labels for semi-supervised learning and provide extensive analysis to validate various design choices.
We present ShapeNet: a richly-annotated, large-scale repository of shapes represented by 3D CAD models of objects. ShapeNet contains 3D models from a multitude of semantic categories and organizes them under … We present ShapeNet: a richly-annotated, large-scale repository of shapes represented by 3D CAD models of objects. ShapeNet contains 3D models from a multitude of semantic categories and organizes them under the WordNet taxonomy. It is a collection of datasets providing many semantic annotations for each 3D model such as consistent rigid alignments, parts and bilateral symmetry planes, physical sizes, keywords, as well as other planned annotations. Annotations are made available through a public web-based interface to enable data visualization of object attributes, promote data-driven geometric analysis, and provide a large-scale quantitative benchmark for research in computer graphics and vision. At the time of this technical report, ShapeNet has indexed more than 3,000,000 models, 220,000 models out of which are classified into 3,135 categories (WordNet synsets). In this report we describe the ShapeNet effort as a whole, provide details for all currently available datasets, and summarize future plans.
Generation of 3D data by deep neural networks has been attracting increasing attention in the research community. The majority of extant works resort to regular representations such as volumetric grids … Generation of 3D data by deep neural networks has been attracting increasing attention in the research community. The majority of extant works resort to regular representations such as volumetric grids or collections of images; however, these representations obscure the natural invariance of 3D shapes under geometric transformations, and also suffer from a number of other issues. In this paper we address the problem of 3D reconstruction from a single image, generating a straight-forward form of output - point cloud coordinates. Along with this problem arises a unique and interesting issue, that the groundtruth shape for an input image may be ambiguous. Driven by this unorthodox output form and the inherent ambiguity in groundtruth, we design architecture, loss function and learning paradigm that are novel and effective. Our final solution is a conditional shape sampler, capable of predicting multiple plausible 3D point clouds from an input image. In experiments not only can our system outperform state-of-the-art methods on single image based 3d reconstruction benchmarks; but it also shows strong performance for 3D shape completion and promising ability in making multiple plausible predictions.
We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions - a new construction for convolutional networks on 3D data. In … We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions - a new construction for convolutional networks on 3D data. In contrast to volumetric approaches, our method operates directly on surface geometry. Crucially, the construction is applicable to unstructured point clouds and other noisy real-world data. We show that tangent convolutions can be evaluated efficiently on large-scale point clouds with millions of points. Using tangent convolutions, we design a deep fully-convolutional network for semantic segmentation of 3D point clouds, and apply it to challenging real-world datasets of indoor and outdoor 3D environments. Experimental results show that the presented approach outperforms other recent deep network constructions in detailed analysis of large 3D scenes.
We present AVOD, an Aggregate View Object Detection network for autonomous driving scenarios. The proposed neural network architecture uses LIDAR point clouds and RGB images to generate features that are … We present AVOD, an Aggregate View Object Detection network for autonomous driving scenarios. The proposed neural network architecture uses LIDAR point clouds and RGB images to generate features that are shared by two subnetworks: a region proposal network (RPN) and a second stage detector network. The proposed RPN uses a novel architecture capable of performing multimodal feature fusion on high resolution feature maps to generate reliable 3D object proposals for multiple object classes in road scenes. Using these proposals, the second stage detection network performs accurate oriented 3D bounding box regression and category classification to predict the extents, orientation, and classification of objects in 3D space. Our proposed architecture is shown to produce state of the art results on the KITTI 3D object detection benchmark [1] while running in real time with a low memory footprint, making it a suitable candidate for deployment on autonomous vehicles. Code is available at: https://github.com/kujason/avod.
We present PointFusion, a generic 3D object detection method that leverages both image and 3D point cloud information. Unlike existing methods that either use multistage pipelines or hold sensor and … We present PointFusion, a generic 3D object detection method that leverages both image and 3D point cloud information. Unlike existing methods that either use multistage pipelines or hold sensor and dataset-specific assumptions, PointFusion is conceptually simple and application-agnostic. The image data and the raw point cloud data are independently processed by a CNN and a PointNet architecture, respectively. The resulting outputs are then combined by a novel fusion network, which predicts multiple 3D box hypotheses and their confidences, using the input 3D points as spatial anchors. We evaluate PointFusion on two distinctive datasets: the KITTI dataset that features driving scenes captured with a lidar-camera setup, and the SUN-RGBD dataset that captures indoor environments with RGB-D cameras. Our model is the first one that is able to perform better or on-par with the state-of-the-art on these diverse datasets without any dataset-specific model tuning.
We present Hybrid Voxel Network (HVNet), a novel one-stage unified network for point cloud based 3D object detection for autonomous driving. Recent studies show that 2D voxelization with per voxel … We present Hybrid Voxel Network (HVNet), a novel one-stage unified network for point cloud based 3D object detection for autonomous driving. Recent studies show that 2D voxelization with per voxel PointNet style feature extractor leads to accurate and efficient detector for large 3D scenes. Since the size of the feature map determines the computation and memory cost, the size of the voxel becomes a parameter that is hard to balance. A smaller voxel size gives a better performance, especially for small objects, but a longer inference time. A larger voxel can cover the same area with a smaller feature map, but fails to capture intricate features and accurate location for smaller objects. We present a Hybrid Voxel network that solves this problem by fusing voxel feature encoder (VFE) of different scales at point-wise level and project into multiple pseudo-image feature maps. We further propose an attentive voxel feature encoding that outperforms plain VFE and a feature fusion pyramid network to aggregate multi-scale information at feature map level. Experiments on the KITTI benchmark show that a single HVNet achieves the best mAP among all existing methods with a real time inference speed of 31Hz.
Unlike on images, semantic learning on 3D point clouds using a deep network is challenging due to the naturally unordered data structure. Among existing works, PointNet has achieved promising results … Unlike on images, semantic learning on 3D point clouds using a deep network is challenging due to the naturally unordered data structure. Among existing works, PointNet has achieved promising results by directly learning on point sets. However, it does not take full advantage of a point's local neighborhood that contains fine-grained structural information which turns out to be helpful towards better semantic learning. In this regard, we present two new operations to improve PointNet with a more efficient exploitation of local structures. The first one focuses on local 3D geometric structures. In analogy to a convolution kernel for images, we define a point-set kernel as a set of learnable 3D points that jointly respond to a set of neighboring data points according to their geometric affinities measured by kernel correlation, adapted from a similar technique for point cloud registration. The second one exploits local high-dimensional feature structures by recursive feature aggregation on a nearest-neighbor-graph computed from 3D positions. Experiments show that our network can efficiently capture local information and robustly achieve better performances on major datasets. Our code is available at http://www.merl.com/research/license#KCNet.
In this paper, we study the problem of semantic annotation on 3D models that are represented as shape graphs. A functional view is taken to represent localized information on graphs, … In this paper, we study the problem of semantic annotation on 3D models that are represented as shape graphs. A functional view is taken to represent localized information on graphs, so that annotations such as part segment or keypoint are nothing but 0-1 indicator vertex functions. Compared with images that are 2D grids, shape graphs are irregular and non-isomorphic data structures. To enable the prediction of vertex functions on them by convolutional neural networks, we resort to spectral CNN method that enables weight sharing by parametrizing kernels in the spectral domain spanned by graph Laplacian eigenbases. Under this setting, our network, named SyncSpecCNN, strives to overcome two key challenges: how to share coefficients and conduct multi-scale analysis in different parts of the graph for a single shape, and how to share information across related but different shapes that may be represented by very different graphs. Towards these goals, we introduce a spectral parametrization of dilated convolutional kernels and a spectral transformer network. Experimentally we tested SyncSpecCNN on various tasks, including 3D shape part segmentation and keypoint prediction. State-of-the-art performance has been achieved on all benchmark datasets.
We present Argoverse, a dataset designed to support autonomous vehicle perception tasks including 3D tracking and motion forecasting. Argoverse includes sensor data collected by a fleet of autonomous vehicles in … We present Argoverse, a dataset designed to support autonomous vehicle perception tasks including 3D tracking and motion forecasting. Argoverse includes sensor data collected by a fleet of autonomous vehicles in Pittsburgh and Miami as well as 3D tracking annotations, 300k extracted interesting vehicle trajectories, and rich semantic maps. The sensor data consists of 360 degree images from 7 cameras with overlapping fields of view, forward-facing stereo imagery, 3D point clouds from long range LiDAR, and 6-DOF pose. Our 290km of mapped lanes contain rich geometric and semantic metadata which are not currently available in any public dataset. All data is released under a Creative Commons license at Argoverse.org. In baseline experiments, we use map information such as lane direction, driveable area, and ground height to improve the accuracy of 3D object tracking. We use 3D object tracking to mine for more than 300k interesting vehicle trajectories to create a trajectory forecasting benchmark. Motion forecasting experiments ranging in complexity from classical methods (k-NN) to LSTMs demonstrate that using detailed vector maps with lane-level information substantially reduces prediction error. Our tracking and forecasting experiments represent only a superficial exploration of the potential of rich maps in robotic perception. We hope that Argoverse will enable the research community to explore these problems in greater depth.
A longstanding question in computer vision concerns the representation of 3D shapes for recognition: should 3D shapes be represented with descriptors operating on their native 3D formats, such as voxel … A longstanding question in computer vision concerns the representation of 3D shapes for recognition: should 3D shapes be represented with descriptors operating on their native 3D formats, such as voxel grid or polygon mesh, or can they be effectively represented with view-based descriptors? We address this question in the context of learning to recognize 3D shapes from a collection of their rendered views on 2D images. We first present a standard CNN architecture trained to recognize the shapes' rendered views independently of each other, and show that a 3D shape can be recognized even from a single view at an accuracy far higher than using state-of-the-art 3D shape descriptors. Recognition rates further increase when multiple views of the shapes are provided. In addition, we present a novel CNN architecture that combines information from multiple views of a 3D shape into a single and compact shape descriptor offering even better recognition performance. The same architecture can be applied to accurately recognize human hand-drawn sketches of shapes. We conclude that a collection of 2D views can be highly informative for 3D shape recognition and is amenable to emerging CNN architectures and their derivatives.
In this paper we propose to exploit multiple related tasks for accurate multi-sensor 3D object detection. Towards this goal we present an end-to-end learnable architecture that reasons about 2D and … In this paper we propose to exploit multiple related tasks for accurate multi-sensor 3D object detection. Towards this goal we present an end-to-end learnable architecture that reasons about 2D and 3D object detection as well as ground estimation and depth completion. Our experiments show that all these tasks are complementary and help the network learn better representations by fusing information at various levels. Importantly, our approach leads the KITTI benchmark on 2D, 3D and bird's eye view object detection, while being real-time.