Type: Article
Publication Date: 2015-01-01
Citations: 20
DOI: https://doi.org/10.1155/2015/160401
We deal with a new type of statistical convergence for double sequences, called<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>Ψ</mml:mi></mml:mrow></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:math>-statistical convergence, and we prove a Korovkin-type approximation theorem with respect to this type of convergence in modular spaces. Finally, we give some application to moment-type operators in Orlicz spaces.