Ask a Question

Prefer a chat interface with context about you and your work?

Weighted<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:math>-Statistical Convergence for Sequences of Positive Linear Operators

Weighted<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:math>-Statistical Convergence for Sequences of Positive Linear Operators

We introduce the notion of weighted<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:math>-statistical convergence of a sequence, where<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:math>represents the nonnegative regular matrix. We also prove the Korovkin approximation theorem by using the notion of weighted<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:math>-statistical convergence. Further, we give a rate of weighted<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:math>-statistical convergence and apply the classical Bernstein …