Ask a Question

Prefer a chat interface with context about you and your work?

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>位</mml:mi></mml:mrow></mml:math>-Statistical Convergence in Paranormed Space

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>位</mml:mi></mml:mrow></mml:math>-Statistical Convergence in Paranormed Space

The concept of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>位</mml:mi></mml:mrow></mml:math>-statistical convergence for sequences of real numbers was introduced in Mursaleen (2000). In this paper, we prove decomposition theorem for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>位</mml:mi></mml:mrow></mml:math>-statistical convergence. We also define and study<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>位</mml:mi></mml:mrow></mml:math>-statistical convergence,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:mi>位</mml:mi></mml:mrow></mml:math>-statistically Cauchy, and strongly<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:msub><mml:mrow><mml:mi>位</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>-summability in Paranormed Space.