Noah Brenowitz

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Stochastic Flow Matching for Resolving Small-Scale Physics 2024 Stathi Fotiadis
Noah Brenowitz
Tomas Geffner
Yair Cohen
Michael S. Pritchard
Arash Vahdat
Morteza Mardani
+ PDF Chat Kilometer-Scale Convection Allowing Model Emulation using Generative Diffusion Modeling 2024 Jaideep Pathak
Yair Cohen
Piyush Garg
Peter Harrington
Noah Brenowitz
Dale R. Durran
Morteza Mardani
Arash Vahdat
Shaoming Xu
Karthik Kashinath
+ PDF Chat Huge Ensembles Part I: Design of Ensemble Weather Forecasts using Spherical Fourier Neural Operators 2024 Ankur Mahesh
William D. Collins
Boris Bonev
Noah Brenowitz
Yair Cohen
Joe D. Elms
Peter Harrington
Karthik Kashinath
Thorsten Kurth
Joshua S. North
+ PDF Chat Huge Ensembles Part II: Properties of a Huge Ensemble of Hindcasts Generated with Spherical Fourier Neural Operators 2024 Ankur Mahesh
William D. Collins
Boris Bonev
Noah Brenowitz
Yair Cohen
Peter Harrington
Karthik Kashinath
Thorsten Kurth
Joshua S. North
T. A. O'Brien
+ Advancing Parsimonious Deep Learning Weather Prediction Using the HEALPix Mesh 2024 Matthias Karlbauer
Nathaniel Cresswell‐Clay
Dale R. Durran
Raul A. Moreno
Thorsten Kurth
Boris Bonev
Noah Brenowitz
Martin V. Butz
+ PDF Chat Stable Machine-Learning Parameterization of Subgrid Processes with Real Geography and Full-physics Emulation 2024 Zeyuan Hu
Akshay Subramaniam
Zhiming Kuang
Jerry Lin
Sungduk Yu
Walter M. Hannah
Noah Brenowitz
Josh Romero
Michael S. Pritchard
+ PDF Chat Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales 2024 Peter Manshausen
Yair Cohen
Jaideep Pathak
Mike Pritchard
Piyush Garg
Morteza Mardani
Karthik Kashinath
Simon Byrne
Noah Brenowitz
+ PDF Chat Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model 2024 Chenggong Wang
Michael S. Pritchard
Noah Brenowitz
Yair Cohen
Boris Bonev
Thorsten Kurth
Dale R. Durran
Jaideep Pathak
+ PDF Chat DiffObs: Generative Diffusion for Global Forecasting of Satellite Observations 2024 Jason Stock
Jaideep Pathak
Yair Cohen
Mike Pritchard
Piyush Garg
Dale R. Durran
Morteza Mardani
Noah Brenowitz
+ PDF Chat A Practical Probabilistic Benchmark for AI Weather Models 2024 Noah Brenowitz
Yair Cohen
Jaideep Pathak
Ankur Mahesh
Boris Bonev
Thorsten Kurth
Dale R. Durran
Peter Harrington
Michael S. Pritchard
+ PDF Chat Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh 2023 Matthias Karlbauer
Nathaniel Cresswell‐Clay
Dale R. Durran
Raul A. Moreno
Thorsten Kurth
Boris Bonev
Noah Brenowitz
Martin V. Butz
+ ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation 2023 Sungduk Yu
Walter M. Hannah
Liran Peng
Mohamed Aziz Bhouri
Ritwik Gupta
Y. S. Lin
Björn LĂŒtjens
Justus C. Will
Tom Beucler
Bryce E. Harrop
+ Residual Diffusion Modeling for Km-scale Atmospheric Downscaling 2023 Morteza Mardani
Noah Brenowitz
Yair Cohen
Jaideep Pathak
Chieh‐Yu Chen
Cheng-Chin Liu
Arash Vahdat
Karthik Kashinath
Jan Kautz
Mike Pritchard
+ ACE: A fast, skillful learned global atmospheric model for climate prediction 2023 Oliver Watt‐Meyer
Gideon Dresdner
Jeremy McGibbon
Spencer K. Clark
Brian Henn
John S. Duncan
Noah Brenowitz
Karthik Kashinath
Michael S. Pritchard
Boris Bonev
+ Emulating Fast Processes in Climate Models 2022 Noah Brenowitz
W. A. Perkins
Jacqueline M. Nugent
Oliver Watt‐Meyer
Spencer K. Clark
Anna Kwa
Brian Henn
Jeremy McGibbon
Christopher S. Bretherton
+ Machine-learned climate model corrections from a global storm-resolving model 2022 Anna Kwa
Spencer K. Clark
Brian Henn
Noah Brenowitz
Jeremy McGibbon
W. A. Perkins
Oliver Watt‐Meyer
Lucas Harris
Christopher S. Bretherton
+ Improving the predictions of ML-corrected climate models with novelty detection 2022 Clayton Sanford
Anna Kwa
Oliver Watt‐Meyer
Spencer K. Clark
Noah Brenowitz
Jeremy McGibbon
Christopher S. Bretherton
+ PDF Chat fv3gfs-wrapper: a Python wrapper of the FV3GFS atmospheric model 2021 Jeremy McGibbon
Noah Brenowitz
Mark Cheeseman
Spencer K. Clark
Johann Dahm
Eddie Davis
Oliver D. Elbert
Rhea George
Lucas Harris
Brian Henn
+ Interpreting and Stabilizing Machine-Learning Parametrizations of Convection 2020 Noah Brenowitz
Tom Beucler
Michael S. Pritchard
Christopher S. Bretherton
+ Machine Learning Climate Model Dynamics: Offline versus Online Performance 2020 Noah Brenowitz
Brian Henn
Jeremy McGibbon
Spencer K. Clark
Anna Kwa
W. A. Perkins
Oliver Watt‐Meyer
Christopher S. Bretherton
+ PDF Chat Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse‐Graining 2019 Noah Brenowitz
Christopher S. Bretherton
+ PDF Chat Prognostic Validation of a Neural Network Unified Physics Parameterization 2018 Noah Brenowitz
Christopher S. Bretherton
+ PDF Chat Prognostic validation of a neural network unified physics parameterization 2018 Noah Brenowitz
Christopher S. Bretherton
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events 2018 Paul A. O’Gorman
J. G. Dwyer
3
+ PDF Chat Deep learning to represent subgrid processes in climate models 2018 Stephan Rasp
Michael S. Pritchard
Pierre Gentine
3
+ PDF Chat Prognostic Validation of a Neural Network Unified Physics Parameterization 2018 Noah Brenowitz
Christopher S. Bretherton
3
+ PDF Chat Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse‐Graining 2019 Noah Brenowitz
Christopher S. Bretherton
2
+ PDF Chat Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High‐Resolution Simulations 2017 Tapio Schneider
Shiwei Lan
Andrew M. Stuart
J. Teixeira
2
+ PDF Chat Data‐Driven Medium‐Range Weather Prediction With a Resnet Pretrained on Climate Simulations: A New Model for WeatherBench 2021 Stephan Rasp
Nils Thuerey
2
+ PDF Chat Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 2021 Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
Baining Guo
2
+ Relational inductive biases, deep learning, and graph networks 2018 Peter Battaglia
Jessica B. Hamrick
Victor Bapst
Álvaro Sánchez‐González
VinĂ­cius Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
2
+ Forecasting Global Weather with Graph Neural Networks 2022 Ryan Keisler
2
+ PDF Chat UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation 2020 Hui-Min Huang
Lanfen Lin
Ruofeng Tong
Hongjie Hu
Qiaowei Zhang
Yutaro Iwamoto
Xian‐Hua Han
Yen‐Wei Chen
Jian Wu
2
+ PDF Chat UNet++: A Nested U-Net Architecture for Medical Image Segmentation 2018 Zongwei Zhou
Md Mahfuzur Rahman Siddiquee
Nima Tajbakhsh
Jianming Liang
2
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ Learning Mesh-Based Simulation with Graph Networks 2020 Tobias Pfaff
Meire Fortunato
Álvaro Sánchez‐González
Peter Battaglia
2
+ GraphCast: Learning skillful medium-range global weather forecasting 2022 RĂ©mi Lam
Álvaro Sánchez‐González
Matthew Willson
Peter Wirnsberger
Meire Fortunato
Alexander Pritzel
Suman Ravuri
Timo Ewalds
Ferran Alet
Zach Eaton-Rosen
2
+ PDF Chat Global Extreme Heat Forecasting Using Neural Weather Models 2022 Ignacio Lopez‐Gomez
Amy McGovern
Shreya Agrawal
Jason Hickey
2
+ PDF Chat SwinVRNN: A Data‐Driven Ensemble Forecasting Model via Learned Distribution Perturbation 2023 Yuan Hu
Lei Chen
Zhibin Wang
Hao Li
2
+ FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond 10 Days Lead 2023 Kang Chen
Tao Han
Junchao Gong
Lei Bai
Fenghua Ling
Jing‐Jia Luo
Xi Chen
Leiming Ma
Tianning Zhang
Rui Su
2
+ Inductive biases in deep learning models for weather prediction 2023 Jannik Thuemmel
Matthias Karlbauer
Sebastian Otte
Christiane Zarfl
Georg Martius
Nicole Ludwig
Thomas Scholten
Ulrich Friedrich
Volker Wulfmeyer
Bedartha Goswami
2
+ Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere 2023 Boris Bonev
Thorsten Kurth
Christian Hundt
Jaideep Pathak
Maximilian Baust
Karthik Kashinath
Anima Anandkumar
2
+ FourCastNet: Accelerating Global High-Resolution Weather Forecasting Using Adaptive Fourier Neural Operators 2023 Thorsten Kurth
Shashank Subramanian
Peter Harrington
Jaideep Pathak
Morteza Mardani
David Hall
Andrea Miele
Karthik Kashinath
Anima Anandkumar
2
+ Differentiable modelling to unify machine learning and physical models for geosciences 2023 Chaopeng Shen
Alison Appling
Pierre Gentine
Toshiyuki Bandai
Hoshin V. Gupta
Alexandre M. Tartakovsky
Marco Baity‐Jesi
Fabrizio Fenicia
Daniel Kifer
Li Li
2
+ Attention Is All You Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Ɓukasz Kaiser
Illia Polosukhin
2
+ PDF Chat HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere 2005 K. M. Górski
E. Hivon
A. J. Banday
B. D. Wandelt
F. K. Hansen
M. Reinecke
Matthias Bartelmann
2
+ Fourier Neural Operator for Parametric Partial Differential Equations 2020 Zongyi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
2
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
2
+ Gaussian Error Linear Units (GELUs) 2016 Dan Hendrycks
Kevin Gimpel
2
+ Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation 2014 Kyunghyun Cho
Bart van Merriënboer
Çaǧlar GĂŒlçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
2
+ PDF Chat Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems 2021 Tom Beucler
Michael S. Pritchard
Stephan Rasp
Jordan Ott
Pierre Baldi
Pierre Gentine
2
+ PDF Chat WeatherBench 2: A Benchmark for the Next Generation of Data‐Driven Global Weather Models 2024 Stephan Rasp
Stephan Hoyer
Alexander Merose
Ian Langmore
Peter Battaglia
Tyler Russell
Álvaro Sánchez‐González
Vivian Yang
Robert W. Carver
Shreya Agrawal
1
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
1
+ Methods for interpreting and understanding deep neural networks 2017 Grégoire Montavon
Wojciech Samek
Klaus‐Robert MĂŒller
1
+ Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models 2017 Wojciech Samek
Thomas Wiegand
Klaus‐Robert MĂŒller
1
+ PDF Chat DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications 2019 Nathanaël Perraudin
Michaël Defferrard
T. Kacprzak
Raphaël Sgier
1
+ PDF Chat A parallel Fortran framework for neural networks and deep learning 2019 Milan Curcic
1
+ Coupled online learning as a way to tackle instabilities and biases in neural network parameterizations: general algorithms and Lorenz96 case study (v1.0) 2020 Stephan Rasp
1
+ PDF Chat Convolutional neural networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis 2019 N. Krachmalnicoff
M. Tomasi
1
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+ Delving Deeper into Convolutional Networks for Learning Video Representations 2015 Nicolas Ballas
Li Yao
Chris Pal
Aaron Courville
1
+ SGDR: Stochastic Gradient Descent with Warm Restarts 2016 Ilya Loshchilov
Frank Hutter
1
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+ PDF Chat Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability 2020 Benjamin A. Toms
Elizabeth A. Barnes
Imme Ebert‐Uphoff
1
+ PDF Chat Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions 2020 Janni Yuval
Paul A. O’Gorman
1
+ PDF Chat A Fortran-Keras Deep Learning Bridge for Scientific Computing 2020 Jordan Ott
Mike Pritchard
Natalie Best
Erik Linstead
Milan Curcic
Pierre Baldi
1
+ Interpreting and Stabilizing Machine-Learning Parametrizations of Convection 2020 Noah Brenowitz
Tom Beucler
Michael S. Pritchard
Christopher S. Bretherton
1
+ An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 2020 Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
Thomas Unterthiner
Mostafa Dehghani
Matthias Minderer
Georg Heigold
Sylvain Gelly
1
+ PDF Chat The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years 2018 T. N. Palmer
1
+ PDF Chat Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations 2019 Boris Hanin
1
+ PDF Chat Array programming with NumPy 2020 C. R. Harris
K. Jarrod Millman
Stéfan van der Walt
Ralf Gommers
Pauli Virtanen
David Cournapeau
Eric Wieser
Julian Taylor
Sebastian Berg
Nathaniel J. Smith
1
+ PDF Chat Use of Neural Networks for Stable, Accurate and Physically Consistent Parameterization of Subgrid Atmospheric Processes With Good Performance at Reduced Precision 2021 Janni Yuval
Paul A. O’Gorman
Chris Hill
1
+ PDF Chat Sub‐Seasonal Forecasting With a Large Ensemble of Deep‐Learning Weather Prediction Models 2021 Jonathan A. Weyn
Dale R. Durran
Rich Caruana
Nathaniel Cresswell‐Clay
1