Author Description

Login to generate an author description

Ask a Question About This Mathematician

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014. Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014.
In this paper we compare different types of recurrent units in recurrent neural networks (RNNs). Especially, we focus on more sophisticated units that implement a gating mechanism, such as a … In this paper we compare different types of recurrent units in recurrent neural networks (RNNs). Especially, we focus on more sophisticated units that implement a gating mechanism, such as a long short-term memory (LSTM) unit and a recently proposed gated recurrent unit (GRU). We evaluate these recurrent units on the tasks of polyphonic music modeling and speech signal modeling. Our experiments revealed that these advanced recurrent units are indeed better than more traditional recurrent units such as tanh units. Also, we found GRU to be comparable to LSTM.
In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a … In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixed-length vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder-Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases.
In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There … In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.
Abstract: In this paper, we explore different ways to extend a recurrent neural network (RNN) to a \textit{deep} RNN. We start by arguing that the concept of depth in an … Abstract: In this paper, we explore different ways to extend a recurrent neural network (RNN) to a \textit{deep} RNN. We start by arguing that the concept of depth in an RNN is not as clear as it is in feedforward neural networks. By carefully analyzing and understanding the architecture of an RNN, however, we find three points of an RNN which may be made deeper; (1) input-to-hidden function, (2) hidden-to-hidden transition and (3) hidden-to-output function. Based on this observation, we propose two novel architectures of a deep RNN which are orthogonal to an earlier attempt of stacking multiple recurrent layers to build a deep RNN (Schmidhuber, 1992; El Hihi and Bengio, 1996). We provide an alternative interpretation of these deep RNNs using a novel framework based on neural operators. The proposed deep RNNs are empirically evaluated on the tasks of polyphonic music prediction and language modeling. The experimental result supports our claim that the proposed deep RNNs benefit from the depth and outperform the conventional, shallow RNNs.
We replace the Hidden Markov Model (HMM) which is traditionally used in in continuous speech recognition with a bi-directional recurrent neural network encoder coupled to a recurrent neural network decoder … We replace the Hidden Markov Model (HMM) which is traditionally used in in continuous speech recognition with a bi-directional recurrent neural network encoder coupled to a recurrent neural network decoder that directly emits a stream of phonemes. The alignment between the input and output sequences is established using an attention mechanism: the decoder emits each symbol based on a context created with a subset of input symbols elected by the attention mechanism. We report initial results demonstrating that this new approach achieves phoneme error rates that are comparable to the state-of-the-art HMM-based decoders, on the TIMIT dataset.
Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source … Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source character sequence to a target character sequence without any segmentation. We employ a character-level convolutional network with max-pooling at the encoder to reduce the length of source representation, allowing the model to be trained at a speed comparable to subword-level models while capturing local regularities. Our character-to-character model outperforms a recently proposed baseline with a subword-level encoder on WMT’15 DE-EN and CS-EN, and gives comparable performance on FI-EN and RU-EN. We then demonstrate that it is possible to share a single character-level encoder across multiple languages by training a model on a many-to-one translation task. In this multilingual setting, the character-level encoder significantly outperforms the subword-level encoder on all the language pairs. We observe that on CS-EN, FI-EN and RU-EN, the quality of the multilingual character-level translation even surpasses the models specifically trained on that language pair alone, both in terms of the BLEU score and human judgment.
In this paper, we explore different ways to extend a recurrent neural network (RNN) to a \textit{deep} RNN. We start by arguing that the concept of depth in an RNN … In this paper, we explore different ways to extend a recurrent neural network (RNN) to a \textit{deep} RNN. We start by arguing that the concept of depth in an RNN is not as clear as it is in feedforward neural networks. By carefully analyzing and understanding the architecture of an RNN, however, we find three points of an RNN which may be made deeper; (1) input-to-hidden function, (2) hidden-to-hidden transition and (3) hidden-to-output function. Based on this observation, we propose two novel architectures of a deep RNN which are orthogonal to an earlier attempt of stacking multiple recurrent layers to build a deep RNN (Schmidhuber, 1992; El Hihi and Bengio, 1996). We provide an alternative interpretation of these deep RNNs using a novel framework based on neural operators. The proposed deep RNNs are empirically evaluated on the tasks of polyphonic music prediction and language modeling. The experimental result supports our claim that the proposed deep RNNs benefit from the depth and outperform the conventional, shallow RNNs.
Pretrained language models (LMs) perform well on many tasks even when learning from a few examples, but prior work uses many held-out examples to tune various aspects of learning, such … Pretrained language models (LMs) perform well on many tasks even when learning from a few examples, but prior work uses many held-out examples to tune various aspects of learning, such as hyperparameters, training objectives, and natural language templates ("prompts"). Here, we evaluate the few-shot ability of LMs when such held-out examples are unavailable, a setting we call true few-shot learning. We test two model selection criteria, cross-validation and minimum description length, for choosing LM prompts and hyperparameters in the true few-shot setting. On average, both marginally outperform random selection and greatly underperform selection based on held-out examples. Moreover, selection criteria often prefer models that perform significantly worse than randomly-selected ones. We find similar results even when taking into account our uncertainty in a model's true performance during selection, as well as when varying the amount of computation and number of examples used for selection. Overall, our findings suggest that prior work significantly overestimated the true few-shot ability of LMs given the difficulty of few-shot model selection.
While one of the first steps in many NLP systems is selecting what pre-trained word embeddings to use, we argue that such a step is better left for neural networks … While one of the first steps in many NLP systems is selecting what pre-trained word embeddings to use, we argue that such a step is better left for neural networks to figure out by themselves. To that end, we introduce dynamic meta-embeddings, a simple yet effective method for the supervised learning of embedding ensembles, which leads to state-of-the-art performance within the same model class on a variety of tasks. We subsequently show how the technique can be used to shed new light on the usage of word embeddings in NLP systems.
We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we … We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we take an unsupervised approach to produce sub-questions, also enabling us to leverage millions of questions from the internet. Specifically, we propose an algorithm for One-to-N Unsupervised Sequence transduction (ONUS) that learns to map one hard, multi-hop question to many simpler, single-hop sub-questions. We answer sub-questions with an off-the-shelf QA model and give the resulting answers to a recomposition model that combines them into a final answer. We show large QA improvements on HotpotQA over a strong baseline on the original, out-of-domain, and multi-hop dev sets. ONUS automatically learns to decompose different kinds of questions, while matching the utility of supervised and heuristic decomposition methods for QA and exceeding those methods in fluency. Qualitatively, we find that using sub-questions is promising for shedding light on why a QA system makes a prediction.
Generative adversarial networks (GANs) are a learning framework that rely on training a discriminator to estimate a measure of difference between a target and generated distributions. GANs, as normally formulated, … Generative adversarial networks (GANs) are a learning framework that rely on training a discriminator to estimate a measure of difference between a target and generated distributions. GANs, as normally formulated, rely on the generated samples being completely differentiable w.r.t. the generative parameters, and thus do not work for discrete data. We introduce a method for training GANs with discrete data that uses the estimated difference measure from the discriminator to compute importance weights for generated samples, thus providing a policy gradient for training the generator. The importance weights have a strong connection to the decision boundary of the discriminator, and we call our method boundary-seeking GANs (BGANs). We demonstrate the effectiveness of the proposed algorithm with discrete image and character-based natural language generation. In addition, the boundary-seeking objective extends to continuous data, which can be used to improve stability of training, and we demonstrate this on Celeba, Large-scale Scene Understanding (LSUN) bedrooms, and Imagenet without conditioning.
Many (but not all) approaches self-qualifying as "meta-learning" in deep learning and reinforcement learning fit a common pattern of approximating the solution to a nested optimization problem. In this paper, … Many (but not all) approaches self-qualifying as "meta-learning" in deep learning and reinforcement learning fit a common pattern of approximating the solution to a nested optimization problem. In this paper, we give a formalization of this shared pattern, which we call GIMLI, prove its general requirements, and derive a general-purpose algorithm for implementing similar approaches. Based on this analysis and algorithm, we describe a library of our design, higher, which we share with the community to assist and enable future research into these kinds of meta-learning approaches. We end the paper by showcasing the practical applications of this framework and library through illustrative experiments and ablation studies which they facilitate.
In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There … In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.
The gesture recognition using motion capture data and depth sensors has recently drawn more attention in vision recognition. Currently most systems only classify dataset with a couple of dozens different … The gesture recognition using motion capture data and depth sensors has recently drawn more attention in vision recognition. Currently most systems only classify dataset with a couple of dozens different actions. Moreover, feature extraction from the data is often computational complex. In this paper, we propose a novel system to recognize the actions from skeleton data with simple, but effective, features using deep neural networks. Features are extracted for each frame based on the relative positions of joints (PO), temporal differences (TD), and normalized trajectories of motion (NT). Given these features a hybrid multi-layer perceptron is trained, which simultaneously classifies and reconstructs input data. We use deep autoencoder to visualize learnt features. The experiments show that deep neural networks can capture more discriminative information than, for instance, principal component analysis can. We test our system on a public database with 65 classes and more than 2,000 motion sequences. We obtain an accuracy above 95% which is, to our knowledge, the state of the art result for such a large dataset.
Lake and Baroni (2018) recently introduced the SCAN data set, which consists of simple commands paired with action sequences and is intended to test the strong generalization abilities of recurrent … Lake and Baroni (2018) recently introduced the SCAN data set, which consists of simple commands paired with action sequences and is intended to test the strong generalization abilities of recurrent sequence-to-sequence models. Their initial experiments suggested that such models may fail because they lack the ability to extract systematic rules. Here, we take a closer look at SCAN and show that it does not always capture the kind of generalization that it was designed for. To mitigate this we propose a complementary dataset, which requires mapping actions back to the original commands, called NACS. We show that models that do well on SCAN do not necessarily do well on NACS, and that NACS exhibits properties more closely aligned with realistic use-cases for sequence-to-sequence models.
This is a lecture note for the course DS-GA 3001 <Natural Language Understanding with Distributed Representation> at the Center for Data Science , New York University in Fall, 2015. As … This is a lecture note for the course DS-GA 3001 <Natural Language Understanding with Distributed Representation> at the Center for Data Science , New York University in Fall, 2015. As the name of the course suggests, this lecture note introduces readers to a neural network based approach to natural language understanding/processing. In order to make it as self-contained as possible, I spend much time on describing basics of machine learning and neural networks, only after which how they are used for natural languages is introduced. On the language front, I almost solely focus on language modelling and machine translation, two of which I personally find most fascinating and most fundamental to natural language understanding.
Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an … Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an object, and their information exchange is bidirectional and of arbitrary duration. The multi-modal multi-step setting allows agents to develop an internal communication significantly closer to natural language, in that they share a single set of messages, and that the length of the conversation may vary according to the difficulty of the task. We examine these properties empirically using a dataset consisting of images and textual descriptions of mammals, where the agents are tasked with identifying the correct object. Our experiments indicate that a robust and efficient communication protocol emerges, where gradual information exchange informs better predictions and higher communication bandwidth improves generalization.
Jason Lee, Kyunghyun Cho, Douwe Kiela. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019. Jason Lee, Kyunghyun Cho, Douwe Kiela. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
Laura Harding Graesser, Kyunghyun Cho, Douwe Kiela. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). … Laura Harding Graesser, Kyunghyun Cho, Douwe Kiela. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
We extend neural Turing machine (NTM) model into a dynamic neural Turing machine (D-NTM) by introducing a trainable memory addressing scheme. This addressing scheme maintains for each memory cell two … We extend neural Turing machine (NTM) model into a dynamic neural Turing machine (D-NTM) by introducing a trainable memory addressing scheme. This addressing scheme maintains for each memory cell two separate vectors, content and address vectors. This allows the D-NTM to learn a wide variety of location-based addressing strategies including both linear and nonlinear ones. We implement the D-NTM with both continuous, differentiable and discrete, non-differentiable read/write mechanisms. We investigate the mechanisms and effects of learning to read and write into a memory through experiments on Facebook bAbI tasks using both a feedforward and GRUcontroller. The D-NTM is evaluated on a set of Facebook bAbI tasks and shown to outperform NTM and LSTM baselines. We have done extensive analysis of our model and different variations of NTM on bAbI task. We also provide further experimental results on sequential pMNIST, Stanford Natural Language Inference, associative recall and copy tasks.
Image denoising based on a probabilistic model of local image patches has been employed by various researchers, and recently a deep (denoising) autoencoder has been proposed by Burger et al. … Image denoising based on a probabilistic model of local image patches has been employed by various researchers, and recently a deep (denoising) autoencoder has been proposed by Burger et al. [2012] and Xie et al. [2012] as a good model for this. In this paper, we propose that another popular family of models in the field of deep learning, called Boltzmann machines, can perform image denoising as well as, or in certain cases of high level of noise, better than denoising autoencoders. We empirically evaluate the two models on three different sets of images with different types and levels of noise. Throughout the experiments we also examine the effect of the depth of the models. The experiments confirmed our claim and revealed that the performance can be improved by adding more hidden layers, especially when the level of noise is high.
Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, Nako Sung. Proceedings of the 2022 Conference of the North … Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, Nako Sung. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022.
Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an … Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an object, and their information exchange is bidirectional and of arbitrary duration. The multi-modal multi-step setting allows agents to develop an internal communication significantly closer to natural language, in that they share a single set of messages, and that the length of the conversation may vary according to the difficulty of the task. We examine these properties empirically using a dataset consisting of images and textual descriptions of mammals, where the agents are tasked with identifying the correct object. Our experiments indicate that a robust and efficient communication protocol emerges, where gradual information exchange informs better predictions and higher communication bandwidth improves generalization.
We introduce a novel recurrent neural network (RNN) approach to account for temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI). Our approach directly parameterizes … We introduce a novel recurrent neural network (RNN) approach to account for temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI). Our approach directly parameterizes temporal dynamics through recurrent connections, which can be used to formulate blind source separation with a conditional (rather than marginal) independence assumption, which we call RNN-ICA. This formulation enables us to visualize the temporal dynamics of both first order (activity) and second order (directed connectivity) information in brain networks that are widely studied in a static sense, but not well-characterized dynamically. RNN-ICA predicts dynamics directly from the recurrent states of the RNN in both task and resting state fMRI. Our results show both task-related and group-differentiating directed connectivity.
We propose an efficient inference procedure for non-autoregressive machine translation that iteratively refines translation purely in the continuous space. Given a continuous latent variable model for machine translation (Shu et … We propose an efficient inference procedure for non-autoregressive machine translation that iteratively refines translation purely in the continuous space. Given a continuous latent variable model for machine translation (Shu et al., 2020), we train an inference network to approximate the gradient of the marginal log probability of the target sentence, using the latent variable instead. This allows us to use gradient-based optimization to find the target sentence at inference time that approximately maximizes its marginal probability. As each refinement step only involves computation in the latent space of low dimensionality (we use 8 in our experiments), we avoid computational overhead incurred by existing non-autoregressive inference procedures that often refine in token space. We compare our approach to a recently proposed EM-like inference procedure (Shu et al., 2020) that optimizes in a hybrid space, consisting of both discrete and continuous variables. We evaluate our approach on WMT’14 En→De, WMT’16 Ro→En and IWSLT’16 De→En, and observe two advantages over the EM-like inference: (1) it is computationally efficient, i.e. each refinement step is twice as fast, and (2) it is more effective, resulting in higher marginal probabilities and BLEU scores with the same number of refinement steps. On WMT’14 En→De, for instance, our approach is able to decode 6.2 times faster than the autoregressive model with minimal degradation to translation quality (0.9 BLEU).
Molecule representation learning (MRL) methods aim to embed molecules into a real vector space. However, existing SMILES-based (Simplified Molecular-Input Line-Entry System) or GNN-based (Graph Neural Networks) MRL methods either take … Molecule representation learning (MRL) methods aim to embed molecules into a real vector space. However, existing SMILES-based (Simplified Molecular-Input Line-Entry System) or GNN-based (Graph Neural Networks) MRL methods either take SMILES strings as input that have difficulty in encoding molecule structure information, or over-emphasize the importance of GNN architectures but neglect their generalization ability. Here we propose using chemical reactions to assist learning molecule representation. The key idea of our approach is to preserve the equivalence of molecules with respect to chemical reactions in the embedding space, i.e., forcing the sum of reactant embeddings and the sum of product embeddings to be equal for each chemical equation. This constraint is proven effective to 1) keep the embedding space well-organized and 2) improve the generalization ability of molecule embeddings. Moreover, our model can use any GNN as the molecule encoder and is thus agnostic to GNN architectures. Experimental results demonstrate that our method achieves state-of-the-art performance in a variety of downstream tasks, e.g., 17.4% absolute Hit@1 gain in chemical reaction prediction, 2.3% absolute AUC gain in molecule property prediction, and 18.5% relative RMSE gain in graph-edit-distance prediction, respectively, over the best baseline method. The code is available at https://github.com/hwwang55/MolR.
Several interesting generative learning algorithms involve a complex probability distribution over many random variables, involving intractable normalization constants or latent variable normalization. Some of them may even not have an … Several interesting generative learning algorithms involve a complex probability distribution over many random variables, involving intractable normalization constants or latent variable normalization. Some of them may even not have an analytic expression for the unnormalized probability function and no tractable approximation. This makes it difficult to estimate the quality of these models, once they have been trained, or to monitor their quality (e.g. for early stopping) while training. A previously proposed method is based on constructing a non-parametric density estimator of the model's probability function from samples generated by the model. We revisit this idea, propose a more efficient estimator, and prove that it provides a lower bound on the true test log-likelihood, and an unbiased estimator as the number of generated samples goes to infinity, although one that incorporates the effect of poor mixing. We further propose a biased variant of the estimator that can be used reliably with a finite number of samples for the purpose of model comparison.
We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space via which all available resources and knowledge can … We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space via which all available resources and knowledge can be shared across multiple languages. Beyond word alignment, we introduce multiple cluster-level alignments and enforce the word clusters to be consistently distributed across multiple languages. We exploit three signals for clustering: (1) neighbor words in the monolingual word embedding space; (2) character-level information; and (3) linguistic properties (e.g., apposition, locative suffix) derived from linguistic structure knowledge bases available for thousands of languages. We introduce a new cluster-consistent correlational neural network to construct the common semantic space by aligning words as well as clusters. Intrinsic evaluation on monolingual and multilingual QVEC tasks shows our approach achieves significantly higher correlation with linguistic features which are extracted from manually crafted lexical resources than state-of-the-art multi-lingual embedding learning methods do. Using low-resource language name tagging as a case study for extrinsic evaluation, our approach achieves up to 14.6% absolute F-score gain over the state of the art on cross-lingual direct transfer. Our approach is also shown to be robust even when the size of bilingual dictionary is small.
We introduce a method to determine if a certain capability helps to achieve an accurate model of given data. We view labels as being generated from the inputs by a … We introduce a method to determine if a certain capability helps to achieve an accurate model of given data. We view labels as being generated from the inputs by a program composed of subroutines with different capabilities, and we posit that a subroutine is useful if and only if the minimal program that invokes it is shorter than the one that does not. Since minimum program length is uncomputable, we instead estimate the labels' minimum description length (MDL) as a proxy, giving us a theoretically-grounded method for analyzing dataset characteristics. We call the method Rissanen Data Analysis (RDA) after the father of MDL, and we showcase its applicability on a wide variety of settings in NLP, ranging from evaluating the utility of generating subquestions before answering a question, to analyzing the value of rationales and explanations, to investigating the importance of different parts of speech, and uncovering dataset gender bias.
The early phase of training a deep neural network has a dramatic effect on the local curvature of the loss function. For instance, using a small learning rate does not … The early phase of training a deep neural network has a dramatic effect on the local curvature of the loss function. For instance, using a small learning rate does not guarantee stable optimization because the optimization trajectory has a tendency to steer towards regions of the loss surface with increasing local curvature. We ask whether this tendency is connected to the widely observed phenomenon that the choice of the learning rate strongly influences generalization. We first show that stochastic gradient descent (SGD) implicitly penalizes the trace of the Fisher Information Matrix (FIM), a measure of the local curvature, from the start of training. We argue it is an implicit regularizer in SGD by showing that explicitly penalizing the trace of the FIM can significantly improve generalization. We highlight that poor final generalization coincides with the trace of the FIM attaining a large value early in training, to which we refer as catastrophic Fisher explosion. Finally, to gain insight into the regularization effect of penalizing the trace of the FIM, we show that it limits memorization by reducing the learning speed of examples with noisy labels more than that of the examples with clean labels.
Interlingua based Machine Translation (MT) aims to encode multiple languages into a common linguistic representation and then decode sentences in multiple target languages from this representation. In this work we … Interlingua based Machine Translation (MT) aims to encode multiple languages into a common linguistic representation and then decode sentences in multiple target languages from this representation. In this work we explore this idea in the context of neural encoder decoder architectures, albeit on a smaller scale and without MT as the end goal. Specifically, we consider the case of three languages or modalities X, Z and Y wherein we are interested in generating sequences in Y starting from information available in X. However, there is no parallel training data available between X and Y but, training data is available between X &amp; Z and Z &amp; Y (as is often the case in many real world applications). Z thus acts as a pivot/bridge. An obvious solution, which is perhaps less elegant but works very well in practice is to train a two stage model which first converts from X to Z and then from Z to Y. Instead we explore an interlingua inspired solution which jointly learns to do the following (i) encode X and Z to a common representation and (ii) decode Y from this common representation. We evaluate our model on two tasks: (i) bridge transliteration and (ii) bridge captioning. We report promising results in both these applications and believe that this is a right step towards truly interlingua inspired encoder decoder architectures.
The gesture recognition using motion capture data and depth sensors has recently drawn more attention in vision recognition. Currently most systems only classify dataset with a couple of dozens different … The gesture recognition using motion capture data and depth sensors has recently drawn more attention in vision recognition. Currently most systems only classify dataset with a couple of dozens different actions. Moreover, feature extraction from the data is often computational complex. In this paper, we propose a novel system to recognize the actions from skeleton data with simple, but effective, features using deep neural networks. Features are extracted for each frame based on the relative positions of joints (PO), temporal differences (TD), and normalized trajectories of motion (NT). Given these features a hybrid multi-layer perceptron is trained, which simultaneously classifies and reconstructs input data. We use deep autoencoder to visualize learnt features, and the experiments show that deep neural networks can capture more discriminative information than, for instance, principal component analysis can. We test our system on a public database with 65 classes and more than 2,000 motion sequences. We obtain an accuracy above 95% which is, to our knowledge, the state of the art result for such a large dataset.
Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source … Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source character sequence to a target character sequence without any segmentation. We employ a character-level convolutional network with max-pooling at the encoder to reduce the length of source representation, allowing the model to be trained at a speed comparable to subword-level models while capturing local regularities. Our character-to-character model outperforms a recently proposed baseline with a subword-level encoder on WMT'15 DE-EN and CS-EN, and gives comparable performance on FI-EN and RU-EN. We then demonstrate that it is possible to share a single character-level encoder across multiple languages by training a model on a many-to-one translation task. In this multilingual setting, the character-level encoder significantly outperforms the subword-level encoder on all the language pairs. We observe that on CS-EN, FI-EN and RU-EN, the quality of the multilingual character-level translation even surpasses the models specifically trained on that language pair alone, both in terms of BLEU score and human judgment.
The interaction of conversational systems with users poses an exciting opportunity for improving them after deployment, but little evidence has been provided of its feasibility. In most applications, users are … The interaction of conversational systems with users poses an exciting opportunity for improving them after deployment, but little evidence has been provided of its feasibility. In most applications, users are not able to provide the correct answer to the system, but they are able to provide binary (correct, incorrect) feedback. In this paper we propose feedback-weighted learning based on importance sampling to improve upon an initial supervised system using binary user feedback. We perform simulated experiments on document classification (for development) and Conversational Question Answering datasets like QuAC and DoQA, where binary user feedback is derived from gold annotations. The results show that our method is able to improve over the initial supervised system, getting close to a fully-supervised system that has access to the same labeled examples in in-domain experiments (QuAC), and even matching in out-of-domain experiments (DoQA). Our work opens the prospect to exploit interactions with real users and improve conversational systems after deployment.
While one of the first steps in many NLP systems is selecting what pre-trained word embeddings to use, we argue that such a step is better left for neural networks … While one of the first steps in many NLP systems is selecting what pre-trained word embeddings to use, we argue that such a step is better left for neural networks to figure out by themselves. To that end, we introduce dynamic meta-embeddings, a simple yet effective method for the supervised learning of embedding ensembles, which leads to state-of-the-art performance within the same model class on a variety of tasks. We subsequently show how the technique can be used to shed new light on the usage of word embeddings in NLP systems.
Abstract: Several interesting generative learning algorithms involve a complex probability distribution over many random variables, involving intractable normalization constants or latent variable normalization. Some of them may even not have … Abstract: Several interesting generative learning algorithms involve a complex probability distribution over many random variables, involving intractable normalization constants or latent variable normalization. Some of them may even not have an analytic expression for the unnormalized probability function and no tractable approximation. This makes it difficult to estimate the quality of these models, once they have been trained, or to monitor their quality (e.g. for early stopping) while training. A previously proposed method is based on constructing a non-parametric density estimator of the model's probability function from samples generated by the model. We revisit this idea, propose a more efficient estimator, and prove that it provides a lower bound on the true test log-likelihood, and an unbiased estimator as the number of generated samples goes to infinity, although one that incorporates the effect of poor mixing. We further propose a biased variant of the estimator that can be used reliably with a finite number of samples for the purpose of model comparison.
We propose a system that finds the strongest supporting evidence for a given answer to a question, using passage-based question-answering (QA) as a testbed. We train evidence agents to select … We propose a system that finds the strongest supporting evidence for a given answer to a question, using passage-based question-answering (QA) as a testbed. We train evidence agents to select the passage sentences that most convince a pretrained QA model of a given answer, if the QA model received those sentences instead of the full passage. Rather than finding evidence that convinces one model alone, we find that agents select evidence that generalizes; agent-chosen evidence increases the plausibility of the supported answer, as judged by other QA models and humans. Given its general nature, this approach improves QA in a robust manner: using agent-selected evidence (i) humans can correctly answer questions with only ~20% of the full passage and (ii) QA models can generalize to longer passages and harder questions.
We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we … We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we take an unsupervised approach to produce sub-questions, also enabling us to leverage millions of questions from the internet. Specifically, we propose an algorithm for One-to-N Unsupervised Sequence transduction (ONUS) that learns to map one hard, multi-hop question to many simpler, single-hop sub-questions. We answer sub-questions with an off-the-shelf QA model and give the resulting answers to a recomposition model that combines them into a final answer. We show large QA improvements on HotpotQA over a strong baseline on the original, out-of-domain, and multi-hop dev sets. ONUS automatically learns to decompose different kinds of questions, while matching the utility of supervised and heuristic decomposition methods for QA and exceeding those methods in fluency. Qualitatively, we find that using sub-questions is promising for shedding light on why a QA system makes a prediction.
The gesture recognition using motion capture data and depth sensors has recently drawn more attention in vision recognition. Currently most systems only classify dataset with a couple of dozens different … The gesture recognition using motion capture data and depth sensors has recently drawn more attention in vision recognition. Currently most systems only classify dataset with a couple of dozens different actions. Moreover, feature extraction from the data is often computational complex. In this paper, we propose a novel system to recognize the actions from skeleton data with simple, but effective, features using deep neural networks. Features are extracted for each frame based on the relative positions of joints (PO), temporal differences (TD), and normalized trajectories of motion (NT). Given these features a hybrid multi-layer perceptron is trained, which simultaneously classifies and reconstructs input data. We use deep autoencoder to visualize learnt features, and the experiments show that deep neural networks can capture more discriminative information than, for instance, principal component analysis can. We test our system on a public database with 65 classes and more than 2,000 motion sequences. We obtain an accuracy above 95% which is, to our knowledge, the state of the art result for such a large dataset.
In this work, we propose a computational framework in which agents equipped with communication capabilities simultaneously play a series of referential games, where agents are trained using deep reinforcement learning. … In this work, we propose a computational framework in which agents equipped with communication capabilities simultaneously play a series of referential games, where agents are trained using deep reinforcement learning. We demonstrate that the framework mirrors linguistic phenomena observed in natural language: i) the outcome of contact between communities is a function of inter- and intra-group connectivity; ii) linguistic contact either converges to the majority protocol, or in balanced cases leads to novel creole languages of lower complexity; and iii) a linguistic continuum emerges where neighboring languages are more mutually intelligible than farther removed languages. We conclude that intricate properties of language evolution need not depend on complex evolved linguistic capabilities, but can emerge from simple social exchanges between perceptually-enabled agents playing communication games.
Emergent multi-agent communication protocols are very different from natural language and not easily interpretable by humans. We find that agents that were initially pretrained to produce natural language can also … Emergent multi-agent communication protocols are very different from natural language and not easily interpretable by humans. We find that agents that were initially pretrained to produce natural language can also experience detrimental language drift: when a non-linguistic reward is used in a goal-based task, e.g. some scalar success metric, the communication protocol may easily and radically diverge from natural language. We recast translation as a multi-agent communication game and examine auxiliary training constraints for their effectiveness in mitigating language drift. We show that a combination of syntactic (language model likelihood) and semantic (visual grounding) constraints gives the best communication performance, allowing pre-trained agents to retain English syntax while learning to accurately convey the intended meaning.
We introduce a method to determine if a certain capability helps to achieve an accurate model of given data. We view labels as being generated from the inputs by a … We introduce a method to determine if a certain capability helps to achieve an accurate model of given data. We view labels as being generated from the inputs by a program composed of subroutines with different capabilities, and we posit that a subroutine is useful if and only if the minimal program that invokes it is shorter than the one that does not. Since minimum program length is uncomputable, we instead estimate the labels' minimum description length (MDL) as a proxy, giving us a theoretically-grounded method for analyzing dataset characteristics. We call the method Rissanen Data Analysis (RDA) after the father of MDL, and we showcase its applicability on a wide variety of settings in NLP, ranging from evaluating the utility of generating subquestions before answering a question, to analyzing the value of rationales and explanations, to investigating the importance of different parts of speech, and uncovering dataset gender bias.
In this paper, a simple, general method of adding auxiliary stochastic neurons to a multi-layer perceptron is proposed. It is shown that the proposed method is a generalization of recently … In this paper, a simple, general method of adding auxiliary stochastic neurons to a multi-layer perceptron is proposed. It is shown that the proposed method is a generalization of recently successful methods of dropout (Hinton et al., 2012), explicit noise injection (Vincent et al., 2010; Bishop, 1995) and semantic hashing (Salakhutdinov & Hinton, 2009). Under the proposed framework, an extension of dropout which allows using separate dropping probabilities for different hidden neurons, or layers, is found to be available. The use of different dropping probabilities for hidden layers separately is empirically investigated.
The task of associating images and videos with a natural language description has attracted a great amount of attention recently. Rapid progress has been made in terms of both developing … The task of associating images and videos with a natural language description has attracted a great amount of attention recently. Rapid progress has been made in terms of both developing novel algorithms and releasing new datasets. Indeed, the state-of-the-art results on some of the standard datasets have been pushed into the regime where it has become more and more difficult to make significant improvement. This work takes a step back, and begs two questions: what is the best performance one could possibly achieve on a specific dataset? and How many visual elements does a given model capture?. To answer the first question, we first utilize existing natural language parsers to extract key concepts from ground truth captions. Then a conditional language model is trained to reproduce the original captions given various amount of extracted conceptual hints. By adjusting the amount of visual hints to the language model, we establish empirically dataset-dependent upper bounds on various automatic evaluation metrics commonly used to compare models. We demonstrate the construction of such bounds on MS-COCO, YouTube2Text and LSMDC (a combination of M-VAD and MPII-MD). As an upper bound, it suggests the best possible performance one could achieve on a particular dataset. To answer the second question, the current state-of-the-art results are compared against the proposed upper bounds. Based on such a comparison, we experimentally quantify several important factors concerning image and video captioning: the number of visual concepts captured by different models, the trade-off between the amount of visual elements captured and their accuracy,and the intrinsic difficulty and blessing of different datasets.
Variational methods that rely on a recognition network to approximate the posterior of directed graphical models offer better inference and learning than previous methods. Recent advances that exploit the capacity … Variational methods that rely on a recognition network to approximate the posterior of directed graphical models offer better inference and learning than previous methods. Recent advances that exploit the capacity and flexibility in this approach have expanded what kinds of models can be trained. However, as a proposal for the posterior, the capacity of the recognition network is limited, which can constrain the representational power of the generative model and increase the variance of Monte Carlo estimates. To address these issues, we introduce an iterative refinement procedure for improving the approximate posterior of the recognition network and show that training with the refined posterior is competitive with state-of-the-art methods. The advantages of refinement are further evident in an increased effective sample size, which implies a lower variance of gradient estimates.
We introduce Korean Language Understanding Evaluation (KLUE) benchmark. KLUE is a collection of 8 Korean natural language understanding (NLU) tasks, including Topic Classification, SemanticTextual Similarity, Natural Language Inference, Named Entity … We introduce Korean Language Understanding Evaluation (KLUE) benchmark. KLUE is a collection of 8 Korean natural language understanding (NLU) tasks, including Topic Classification, SemanticTextual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking. We build all of the tasks from scratch from diverse source corpora while respecting copyrights, to ensure accessibility for anyone without any restrictions. With ethical considerations in mind, we carefully design annotation protocols. Along with the benchmark tasks and data, we provide suitable evaluation metrics and fine-tuning recipes for pretrained language models for each task. We furthermore release the pretrained language models (PLM), KLUE-BERT and KLUE-RoBERTa, to help reproducing baseline models on KLUE and thereby facilitate future research. We make a few interesting observations from the preliminary experiments using the proposed KLUE benchmark suite, already demonstrating the usefulness of this new benchmark suite. First, we find KLUE-RoBERTa-large outperforms other baselines, including multilingual PLMs and existing open-source Korean PLMs. Second, we see minimal degradation in performance even when we replace personally identifiable information from the pretraining corpus, suggesting that privacy and NLU capability are not at odds with each other. Lastly, we find that using BPE tokenization in combination with morpheme-level pre-tokenization is effective in tasks involving morpheme-level tagging, detection and generation. In addition to accelerating Korean NLP research, our comprehensive documentation on creating KLUE will facilitate creating similar resources for other languages in the future. KLUE is available at https://klue-benchmark.com.
Historical records in Korea before the 20th century were primarily written in Hanja, an extinct language based on Chinese characters and not understood by modern Korean or Chinese speakers. Historians … Historical records in Korea before the 20th century were primarily written in Hanja, an extinct language based on Chinese characters and not understood by modern Korean or Chinese speakers. Historians with expertise in this time period have been analyzing the documents, but that process is very difficult and time-consuming, and language models would significantly speed up the process. Toward building and evaluating language models for Hanja, we release the Hanja Understanding Evaluation dataset consisting of chronological attribution, topic classification, named entity recognition, and summary retrieval tasks. We also present BERT-based models continued training on the two major corpora from the 14th to the 19th centuries: the Annals of the Joseon Dynasty and Diaries of the Royal Secretariats. We compare the models with several baselines on all tasks and show there are significant improvements gained by training on the two corpora. Additionally, we run zero-shot experiments on the Daily Records of the Royal Court and Important Officials (DRRI). The DRRI dataset has not been studied much by the historians, and not at all by the NLP community.
The Annals of Joseon Dynasty (AJD) contain the daily records of the Kings of Joseon, the 500-year kingdom preceding the modern nation of Korea.The Annals were originally written in an … The Annals of Joseon Dynasty (AJD) contain the daily records of the Kings of Joseon, the 500-year kingdom preceding the modern nation of Korea.The Annals were originally written in an archaic Korean writing system, 'Hanja', and were translated into Korean from 1968 to 1993.The resulting translation was however too literal and contained many archaic Korean words; thus, a new expert translation effort began in 2012. Since then, the records of only one king have been completed in a decade.In parallel, expert translators are working on English translation, also at a slow pace and produced only one king's records in English so far.Thus, we propose H2KE, a neural machine translation model, that translates historical documents in Hanja to more easily understandable Korean and to English.Built on top of multilingual neural machine translation, H2KE learns to translate a historical document written in Hanja, from both a full dataset of outdated Korean translation and a small dataset of more recently translated contemporary Korean and English.We compare our method against two baselines:a recent model that simultaneously learns to restore and translate Hanja historical documentand a Transformer based model trained only on newly translated corpora.The experiments reveal that our method significantly outperforms the baselines in terms of BLEU scores for both contemporary Korean and English translations.We further conduct extensive human evaluation which shows that our translation is preferred over the original expert translations by both experts and non-expert Korean speakers.
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently … Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity per group. In this paper, we study the cause of this inconsistency by unifying existing methods into a standard optimization framework. We show that all methods set proportions to minimize total loss, subject to a method-specific mixing law -- an assumption on how loss is a function of mixture proportions. We find that existing parameterizations of mixing laws can express the true loss-proportion relationship empirically, but the methods themselves often set the mixing law parameters inaccurately, resulting in poor and inconsistent performance. Finally, we leverage the insights from our framework to derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Empirically, Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.28 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.01 test perplexity points.
As training datasets grow larger, we aspire to develop models that generalize well to any diverse test distribution, even if the latter deviates significantly from the training data. Various approaches … As training datasets grow larger, we aspire to develop models that generalize well to any diverse test distribution, even if the latter deviates significantly from the training data. Various approaches like domain adaptation, domain generalization, and robust optimization attempt to address the out-of-distribution challenge by posing assumptions about the relation between training and test distribution. Differently, we adopt a more conservative perspective by accounting for the worst-case error across all sufficiently diverse test distributions within a known domain. Our first finding is that training on a uniform distribution over this domain is optimal. We also interrogate practical remedies when uniform samples are unavailable by considering methods for mitigating non-uniformity through finetuning and rebalancing. Our theory provides a mathematical grounding for previous observations on the role of entropy and rebalancing for o.o.d. generalization and foundation model training. We also provide new empirical evidence across tasks involving o.o.d. shifts which illustrate the broad applicability of our perspective.
The choice of hyperparameters greatly impacts performance in natural language processing. Often, it is hard to tell if a method is better than another or just better tuned. Tuning curves … The choice of hyperparameters greatly impacts performance in natural language processing. Often, it is hard to tell if a method is better than another or just better tuned. Tuning curves fix this ambiguity by accounting for tuning effort. Specifically, they plot validation performance as a function of the number of hyperparameter choices tried so far. While several estimators exist for these curves, it is common to use point estimates, which we show fail silently and give contradictory results when given too little data. Beyond point estimates, confidence bands are necessary to rigorously establish the relationship between different approaches. We present the first method to construct valid confidence bands for tuning curves. The bands are exact, simultaneous, and distribution-free, thus they provide a robust basis for comparing methods. Empirical analysis shows that while bootstrap confidence bands, which serve as a baseline, fail to approximate their target confidence, ours achieve it exactly. We validate our design with ablations, analyze the effect of sample size, and provide guidance on comparing models with our method. To promote confident comparisons in future work, we release opda: an easy-to-use library that you can install with pip. https://github.com/nicholaslourie/opda
The Annals of Joseon Dynasty (AJD) contain the daily records of the Kings of Joseon, the 500-year kingdom preceding the modern nation of Korea. The Annals were originally written in … The Annals of Joseon Dynasty (AJD) contain the daily records of the Kings of Joseon, the 500-year kingdom preceding the modern nation of Korea. The Annals were originally written in an archaic Korean writing system, `Hanja', and translated into Korean from 1968 to 1993. However, this translation was literal and contained many archaic Korean words; thus, a new expert translation effort began in 2012, completing the records of only one king in a decade. Also, expert translators are working on an English translation, of which only one king's records are available because of the high cost and slow progress. Thus, we propose H2KE, the neural machine translation model that translates Hanja historical documents to understandable Korean and English. Based on the multilingual neural machine translation approach, it translates the historical document written in Hanja, using both the full dataset of outdated Korean translation and a small dataset of recently translated Korean and English. We compare our method with two baselines: one is a recent model that simultaneously learns to restore and translate Hanja historical document and the other is the transformer that trained on newly translated corpora only. The results show that our method significantly outperforms the baselines in terms of BLEU score in both modern Korean and English translations. We also conduct a human evaluation that shows that our translation is preferred over the original expert translation.
Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, Nako Sung. Proceedings of the 2022 Conference of the North … Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, Nako Sung. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022.
Historical records in Korea before the 20th century were primarily written in Hanja, an extinct language based on Chinese characters and not understood by modern Korean or Chinese speakers. Historians … Historical records in Korea before the 20th century were primarily written in Hanja, an extinct language based on Chinese characters and not understood by modern Korean or Chinese speakers. Historians with expertise in this time period have been analyzing the documents, but that process is very difficult and time-consuming, and language models would significantly speed up the process. Toward building and evaluating language models for Hanja, we release the Hanja Understanding Evaluation dataset consisting of chronological attribution, topic classification, named entity recognition, and summary retrieval tasks. We also present BERT-based models continued training on the two major corpora from the 14th to the 19th centuries: the Annals of the Joseon Dynasty and Diaries of the Royal Secretariats. We compare the models with several baselines on all tasks and show there are significant improvements gained by training on the two corpora. Additionally, we run zero-shot experiments on the Daily Records of the Royal Court and Important Officials (DRRI). The DRRI dataset has not been studied much by the historians, and not at all by the NLP community.
The Annals of Joseon Dynasty (AJD) contain the daily records of the Kings of Joseon, the 500-year kingdom preceding the modern nation of Korea. The Annals were originally written in … The Annals of Joseon Dynasty (AJD) contain the daily records of the Kings of Joseon, the 500-year kingdom preceding the modern nation of Korea. The Annals were originally written in an archaic Korean writing system, `Hanja', and were translated into Korean from 1968 to 1993. The resulting translation was however too literal and contained many archaic Korean words; thus, a new expert translation effort began in 2012. Since then, the records of only one king have been completed in a decade. In parallel, expert translators are working on English translation, also at a slow pace and produced only one king's records in English so far. Thus, we propose H2KE, a neural machine translation model, that translates historical documents in Hanja to more easily understandable Korean and to English. Built on top of multilingual neural machine translation, H2KE learns to translate a historical document written in Hanja, from both a full dataset of outdated Korean translation and a small dataset of more recently translated contemporary Korean and English. We compare our method against two baselines: a recent model that simultaneously learns to restore and translate Hanja historical document and a Transformer based model trained only on newly translated corpora. The experiments reveal that our method significantly outperforms the baselines in terms of BLEU scores for both contemporary Korean and English translations. We further conduct extensive human evaluation which shows that our translation is preferred over the original expert translations by both experts and non-expert Korean speakers.
The Annals of Joseon Dynasty (AJD) contain the daily records of the Kings of Joseon, the 500-year kingdom preceding the modern nation of Korea.The Annals were originally written in an … The Annals of Joseon Dynasty (AJD) contain the daily records of the Kings of Joseon, the 500-year kingdom preceding the modern nation of Korea.The Annals were originally written in an archaic Korean writing system, 'Hanja', and were translated into Korean from 1968 to 1993.The resulting translation was however too literal and contained many archaic Korean words; thus, a new expert translation effort began in 2012. Since then, the records of only one king have been completed in a decade.In parallel, expert translators are working on English translation, also at a slow pace and produced only one king's records in English so far.Thus, we propose H2KE, a neural machine translation model, that translates historical documents in Hanja to more easily understandable Korean and to English.Built on top of multilingual neural machine translation, H2KE learns to translate a historical document written in Hanja, from both a full dataset of outdated Korean translation and a small dataset of more recently translated contemporary Korean and English.We compare our method against two baselines:a recent model that simultaneously learns to restore and translate Hanja historical documentand a Transformer based model trained only on newly translated corpora.The experiments reveal that our method significantly outperforms the baselines in terms of BLEU scores for both contemporary Korean and English translations.We further conduct extensive human evaluation which shows that our translation is preferred over the original expert translations by both experts and non-expert Korean speakers.
We introduce a method to determine if a certain capability helps to achieve an accurate model of given data. We view labels as being generated from the inputs by a … We introduce a method to determine if a certain capability helps to achieve an accurate model of given data. We view labels as being generated from the inputs by a program composed of subroutines with different capabilities, and we posit that a subroutine is useful if and only if the minimal program that invokes it is shorter than the one that does not. Since minimum program length is uncomputable, we instead estimate the labels' minimum description length (MDL) as a proxy, giving us a theoretically-grounded method for analyzing dataset characteristics. We call the method Rissanen Data Analysis (RDA) after the father of MDL, and we showcase its applicability on a wide variety of settings in NLP, ranging from evaluating the utility of generating subquestions before answering a question, to analyzing the value of rationales and explanations, to investigating the importance of different parts of speech, and uncovering dataset gender bias.
Pretrained language models (LMs) perform well on many tasks even when learning from a few examples, but prior work uses many held-out examples to tune various aspects of learning, such … Pretrained language models (LMs) perform well on many tasks even when learning from a few examples, but prior work uses many held-out examples to tune various aspects of learning, such as hyperparameters, training objectives, and natural language templates ("prompts"). Here, we evaluate the few-shot ability of LMs when such held-out examples are unavailable, a setting we call true few-shot learning. We test two model selection criteria, cross-validation and minimum description length, for choosing LM prompts and hyperparameters in the true few-shot setting. On average, both marginally outperform random selection and greatly underperform selection based on held-out examples. Moreover, selection criteria often prefer models that perform significantly worse than randomly-selected ones. We find similar results even when taking into account our uncertainty in a model's true performance during selection, as well as when varying the amount of computation and number of examples used for selection. Overall, our findings suggest that prior work significantly overestimated the true few-shot ability of LMs given the difficulty of few-shot model selection.
We introduce a method to determine if a certain capability helps to achieve an accurate model of given data. We view labels as being generated from the inputs by a … We introduce a method to determine if a certain capability helps to achieve an accurate model of given data. We view labels as being generated from the inputs by a program composed of subroutines with different capabilities, and we posit that a subroutine is useful if and only if the minimal program that invokes it is shorter than the one that does not. Since minimum program length is uncomputable, we instead estimate the labels' minimum description length (MDL) as a proxy, giving us a theoretically-grounded method for analyzing dataset characteristics. We call the method Rissanen Data Analysis (RDA) after the father of MDL, and we showcase its applicability on a wide variety of settings in NLP, ranging from evaluating the utility of generating subquestions before answering a question, to analyzing the value of rationales and explanations, to investigating the importance of different parts of speech, and uncovering dataset gender bias.
Molecule representation learning (MRL) methods aim to embed molecules into a real vector space. However, existing SMILES-based (Simplified Molecular-Input Line-Entry System) or GNN-based (Graph Neural Networks) MRL methods either take … Molecule representation learning (MRL) methods aim to embed molecules into a real vector space. However, existing SMILES-based (Simplified Molecular-Input Line-Entry System) or GNN-based (Graph Neural Networks) MRL methods either take SMILES strings as input that have difficulty in encoding molecule structure information, or over-emphasize the importance of GNN architectures but neglect their generalization ability. Here we propose using chemical reactions to assist learning molecule representation. The key idea of our approach is to preserve the equivalence of molecules with respect to chemical reactions in the embedding space, i.e., forcing the sum of reactant embeddings and the sum of product embeddings to be equal for each chemical equation. This constraint is proven effective to 1) keep the embedding space well-organized and 2) improve the generalization ability of molecule embeddings. Moreover, our model can use any GNN as the molecule encoder and is thus agnostic to GNN architectures. Experimental results demonstrate that our method achieves state-of-the-art performance in a variety of downstream tasks, e.g., 17.4% absolute Hit@1 gain in chemical reaction prediction, 2.3% absolute AUC gain in molecule property prediction, and 18.5% relative RMSE gain in graph-edit-distance prediction, respectively, over the best baseline method. The code is available at https://github.com/hwwang55/MolR.
We introduce Korean Language Understanding Evaluation (KLUE) benchmark. KLUE is a collection of 8 Korean natural language understanding (NLU) tasks, including Topic Classification, SemanticTextual Similarity, Natural Language Inference, Named Entity … We introduce Korean Language Understanding Evaluation (KLUE) benchmark. KLUE is a collection of 8 Korean natural language understanding (NLU) tasks, including Topic Classification, SemanticTextual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking. We build all of the tasks from scratch from diverse source corpora while respecting copyrights, to ensure accessibility for anyone without any restrictions. With ethical considerations in mind, we carefully design annotation protocols. Along with the benchmark tasks and data, we provide suitable evaluation metrics and fine-tuning recipes for pretrained language models for each task. We furthermore release the pretrained language models (PLM), KLUE-BERT and KLUE-RoBERTa, to help reproducing baseline models on KLUE and thereby facilitate future research. We make a few interesting observations from the preliminary experiments using the proposed KLUE benchmark suite, already demonstrating the usefulness of this new benchmark suite. First, we find KLUE-RoBERTa-large outperforms other baselines, including multilingual PLMs and existing open-source Korean PLMs. Second, we see minimal degradation in performance even when we replace personally identifiable information from the pretraining corpus, suggesting that privacy and NLU capability are not at odds with each other. Lastly, we find that using BPE tokenization in combination with morpheme-level pre-tokenization is effective in tasks involving morpheme-level tagging, detection and generation. In addition to accelerating Korean NLP research, our comprehensive documentation on creating KLUE will facilitate creating similar resources for other languages in the future. KLUE is available at https://klue-benchmark.com.
The interaction of conversational systems with users poses an exciting opportunity for improving them after deployment, but little evidence has been provided of its feasibility. In most applications, users are … The interaction of conversational systems with users poses an exciting opportunity for improving them after deployment, but little evidence has been provided of its feasibility. In most applications, users are not able to provide the correct answer to the system, but they are able to provide binary (correct, incorrect) feedback. In this paper we propose feedback-weighted learning based on importance sampling to improve upon an initial supervised system using binary user feedback. We perform simulated experiments on document classification (for development) and Conversational Question Answering datasets like QuAC and DoQA, where binary user feedback is derived from gold annotations. The results show that our method is able to improve over the initial supervised system, getting close to a fully-supervised system that has access to the same labeled examples in in-domain experiments (QuAC), and even matching in out-of-domain experiments (DoQA). Our work opens the prospect to exploit interactions with real users and improve conversational systems after deployment.
We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we … We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we take an unsupervised approach to produce sub-questions, also enabling us to leverage millions of questions from the internet. Specifically, we propose an algorithm for One-to-N Unsupervised Sequence transduction (ONUS) that learns to map one hard, multi-hop question to many simpler, single-hop sub-questions. We answer sub-questions with an off-the-shelf QA model and give the resulting answers to a recomposition model that combines them into a final answer. We show large QA improvements on HotpotQA over a strong baseline on the original, out-of-domain, and multi-hop dev sets. ONUS automatically learns to decompose different kinds of questions, while matching the utility of supervised and heuristic decomposition methods for QA and exceeding those methods in fluency. Qualitatively, we find that using sub-questions is promising for shedding light on why a QA system makes a prediction.
We propose an efficient inference procedure for non-autoregressive machine translation that iteratively refines translation purely in the continuous space. Given a continuous latent variable model for machine translation (Shu et … We propose an efficient inference procedure for non-autoregressive machine translation that iteratively refines translation purely in the continuous space. Given a continuous latent variable model for machine translation (Shu et al., 2020), we train an inference network to approximate the gradient of the marginal log probability of the target sentence, using only the latent variable as input. This allows us to use gradient-based optimization to find the target sentence at inference time that approximately maximizes its marginal probability. As each refinement step only involves computation in the latent space of low dimensionality (we use 8 in our experiments), we avoid computational overhead incurred by existing non-autoregressive inference procedures that often refine in token space. We compare our approach to a recently proposed EM-like inference procedure (Shu et al., 2020) that optimizes in a hybrid space, consisting of both discrete and continuous variables. We evaluate our approach on WMT'14 En-De, WMT'16 Ro-En and IWSLT'16 De-En, and observe two advantages over the EM-like inference: (1) it is computationally efficient, i.e. each refinement step is twice as fast, and (2) it is more effective, resulting in higher marginal probabilities and BLEU scores with the same number of refinement steps. On WMT'14 En-De, for instance, our approach is able to decode 6.2 times faster than the autoregressive model with minimal degradation to translation quality (0.9 BLEU).
We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we … We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we take an unsupervised approach to produce sub-questions, also enabling us to leverage millions of questions from the internet. Specifically, we propose an algorithm for One-to-N Unsupervised Sequence transduction (ONUS) that learns to map one hard, multi-hop question to many simpler, single-hop sub-questions. We answer sub-questions with an off-the-shelf QA model and give the resulting answers to a recomposition model that combines them into a final answer. We show large QA improvements on HotpotQA over a strong baseline on the original, out-of-domain, and multi-hop dev sets. ONUS automatically learns to decompose different kinds of questions, while matching the utility of supervised and heuristic decomposition methods for QA and exceeding those methods in fluency. Qualitatively, we find that using sub-questions is promising for shedding light on why a QA system makes a prediction.
We propose an efficient inference procedure for non-autoregressive machine translation that iteratively refines translation purely in the continuous space. Given a continuous latent variable model for machine translation (Shu et … We propose an efficient inference procedure for non-autoregressive machine translation that iteratively refines translation purely in the continuous space. Given a continuous latent variable model for machine translation (Shu et al., 2020), we train an inference network to approximate the gradient of the marginal log probability of the target sentence, using the latent variable instead. This allows us to use gradient-based optimization to find the target sentence at inference time that approximately maximizes its marginal probability. As each refinement step only involves computation in the latent space of low dimensionality (we use 8 in our experiments), we avoid computational overhead incurred by existing non-autoregressive inference procedures that often refine in token space. We compare our approach to a recently proposed EM-like inference procedure (Shu et al., 2020) that optimizes in a hybrid space, consisting of both discrete and continuous variables. We evaluate our approach on WMT’14 En→De, WMT’16 Ro→En and IWSLT’16 De→En, and observe two advantages over the EM-like inference: (1) it is computationally efficient, i.e. each refinement step is twice as fast, and (2) it is more effective, resulting in higher marginal probabilities and BLEU scores with the same number of refinement steps. On WMT’14 En→De, for instance, our approach is able to decode 6.2 times faster than the autoregressive model with minimal degradation to translation quality (0.9 BLEU).
The interaction of conversational systems with users poses an exciting opportunity for improving them after deployment, but little evidence has been provided of its feasibility. In most applications, users are … The interaction of conversational systems with users poses an exciting opportunity for improving them after deployment, but little evidence has been provided of its feasibility. In most applications, users are not able to provide the correct answer to the system, but they are able to provide binary (correct, incorrect) feedback. In this paper we propose feedback-weighted learning based on importance sampling to improve upon an initial supervised system using binary user feedback. We perform simulated experiments on document classification (for development) and Conversational Question Answering datasets like QuAC and DoQA, where binary user feedback is derived from gold annotations. The results show that our method is able to improve over the initial supervised system, getting close to a fully-supervised system that has access to the same labeled examples in in-domain experiments (QuAC), and even matching in out-of-domain experiments (DoQA). Our work opens the prospect to exploit interactions with real users and improve conversational systems after deployment.
The early phase of training a deep neural network has a dramatic effect on the local curvature of the loss function. For instance, using a small learning rate does not … The early phase of training a deep neural network has a dramatic effect on the local curvature of the loss function. For instance, using a small learning rate does not guarantee stable optimization because the optimization trajectory has a tendency to steer towards regions of the loss surface with increasing local curvature. We ask whether this tendency is connected to the widely observed phenomenon that the choice of the learning rate strongly influences generalization. We first show that stochastic gradient descent (SGD) implicitly penalizes the trace of the Fisher Information Matrix (FIM), a measure of the local curvature, from the start of training. We argue it is an implicit regularizer in SGD by showing that explicitly penalizing the trace of the FIM can significantly improve generalization. We highlight that poor final generalization coincides with the trace of the FIM attaining a large value early in training, to which we refer as catastrophic Fisher explosion. Finally, to gain insight into the regularization effect of penalizing the trace of the FIM, we show that it limits memorization by reducing the learning speed of examples with noisy labels more than that of the examples with clean labels.
Emergent multi-agent communication protocols are very different from natural language and not easily interpretable by humans. We find that agents that were initially pretrained to produce natural language can also … Emergent multi-agent communication protocols are very different from natural language and not easily interpretable by humans. We find that agents that were initially pretrained to produce natural language can also experience detrimental language drift: when a non-linguistic reward is used in a goal-based task, e.g. some scalar success metric, the communication protocol may easily and radically diverge from natural language. We recast translation as a multi-agent communication game and examine auxiliary training constraints for their effectiveness in mitigating language drift. We show that a combination of syntactic (language model likelihood) and semantic (visual grounding) constraints gives the best communication performance, allowing pre-trained agents to retain English syntax while learning to accurately convey the intended meaning.
In this work, we propose a computational framework in which agents equipped with communication capabilities simultaneously play a series of referential games, where agents are trained using deep reinforcement learning. … In this work, we propose a computational framework in which agents equipped with communication capabilities simultaneously play a series of referential games, where agents are trained using deep reinforcement learning. We demonstrate that the framework mirrors linguistic phenomena observed in natural language: i) the outcome of contact between communities is a function of inter- and intra-group connectivity; ii) linguistic contact either converges to the majority protocol, or in balanced cases leads to novel creole languages of lower complexity; and iii) a linguistic continuum emerges where neighboring languages are more mutually intelligible than farther removed languages. We conclude that intricate properties of language evolution need not depend on complex evolved linguistic capabilities, but can emerge from simple social exchanges between perceptually-enabled agents playing communication games.
Laura Harding Graesser, Kyunghyun Cho, Douwe Kiela. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). … Laura Harding Graesser, Kyunghyun Cho, Douwe Kiela. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
We propose a system that finds the strongest supporting evidence for a given answer to a question, using passage-based question-answering (QA) as a testbed. We train evidence agents to select … We propose a system that finds the strongest supporting evidence for a given answer to a question, using passage-based question-answering (QA) as a testbed. We train evidence agents to select the passage sentences that most convince a pretrained QA model of a given answer, if the QA model received those sentences instead of the full passage. Rather than finding evidence that convinces one model alone, we find that agents select evidence that generalizes; agent-chosen evidence increases the plausibility of the supported answer, as judged by other QA models and humans. Given its general nature, this approach improves QA in a robust manner: using agent-selected evidence (i) humans can correctly answer questions with only ~20% of the full passage and (ii) QA models can generalize to longer passages and harder questions.
Many (but not all) approaches self-qualifying as "meta-learning" in deep learning and reinforcement learning fit a common pattern of approximating the solution to a nested optimization problem. In this paper, … Many (but not all) approaches self-qualifying as "meta-learning" in deep learning and reinforcement learning fit a common pattern of approximating the solution to a nested optimization problem. In this paper, we give a formalization of this shared pattern, which we call GIMLI, prove its general requirements, and derive a general-purpose algorithm for implementing similar approaches. Based on this analysis and algorithm, we describe a library of our design, higher, which we share with the community to assist and enable future research into these kinds of meta-learning approaches. We end the paper by showcasing the practical applications of this framework and library through illustrative experiments and ablation studies which they facilitate.
Jason Lee, Kyunghyun Cho, Douwe Kiela. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019. Jason Lee, Kyunghyun Cho, Douwe Kiela. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
We introduce a novel recurrent neural network (RNN) approach to account for temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI). Our approach directly parameterizes … We introduce a novel recurrent neural network (RNN) approach to account for temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI). Our approach directly parameterizes temporal dynamics through recurrent connections, which can be used to formulate blind source separation with a conditional (rather than marginal) independence assumption, which we call RNN-ICA. This formulation enables us to visualize the temporal dynamics of both first order (activity) and second order (directed connectivity) information in brain networks that are widely studied in a static sense, but not well-characterized dynamically. RNN-ICA predicts dynamics directly from the recurrent states of the RNN in both task and resting state fMRI. Our results show both task-related and group-differentiating directed connectivity.
We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space to enable knowledge and resource transfer across languages. … We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space to enable knowledge and resource transfer across languages. Beyond word alignment, we introduce multiple cluster-level alignments and enforce the word clusters to be consistently distributed across multiple languages. We exploit three signals for clustering: (1) neighbor words in the monolingual word embedding space; (2) character-level information; and (3) linguistic properties (e.g., apposition, locative suffix) derived from linguistic structure knowledge bases available for thousands of languages. We introduce a new cluster-consistent correlational neural network to construct the common semantic space by aligning words as well as clusters. Intrinsic evaluation on monolingual and multilingual QVEC tasks shows our approach achieves significantly higher correlation with linguistic features than state-of-the-art multi-lingual embedding learning methods do. Using low-resource language name tagging as a case study for extrinsic evaluation, our approach achieves up to 24.5\% absolute F-score gain over the state of the art.
While one of the first steps in many NLP systems is selecting what pre-trained word embeddings to use, we argue that such a step is better left for neural networks … While one of the first steps in many NLP systems is selecting what pre-trained word embeddings to use, we argue that such a step is better left for neural networks to figure out by themselves. To that end, we introduce dynamic meta-embeddings, a simple yet effective method for the supervised learning of embedding ensembles, which leads to state-of-the-art performance within the same model class on a variety of tasks. We subsequently show how the technique can be used to shed new light on the usage of word embeddings in NLP systems.
Lake and Baroni (2018) recently introduced the SCAN data set, which consists of simple commands paired with action sequences and is intended to test the strong generalization abilities of recurrent … Lake and Baroni (2018) recently introduced the SCAN data set, which consists of simple commands paired with action sequences and is intended to test the strong generalization abilities of recurrent sequence-to-sequence models. Their initial experiments suggested that such models may fail because they lack the ability to extract systematic rules. Here, we take a closer look at SCAN and show that it does not always capture the kind of generalization that it was designed for. To mitigate this we propose a complementary dataset, which requires mapping actions back to the original commands, called NACS. We show that models that do well on SCAN do not necessarily do well on NACS, and that NACS exhibits properties more closely aligned with realistic use-cases for sequence-to-sequence models.
While one of the first steps in many NLP systems is selecting what pre-trained word embeddings to use, we argue that such a step is better left for neural networks … While one of the first steps in many NLP systems is selecting what pre-trained word embeddings to use, we argue that such a step is better left for neural networks to figure out by themselves. To that end, we introduce dynamic meta-embeddings, a simple yet effective method for the supervised learning of embedding ensembles, which leads to state-of-the-art performance within the same model class on a variety of tasks. We subsequently show how the technique can be used to shed new light on the usage of word embeddings in NLP systems.
We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space via which all available resources and knowledge can … We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space via which all available resources and knowledge can be shared across multiple languages. Beyond word alignment, we introduce multiple cluster-level alignments and enforce the word clusters to be consistently distributed across multiple languages. We exploit three signals for clustering: (1) neighbor words in the monolingual word embedding space; (2) character-level information; and (3) linguistic properties (e.g., apposition, locative suffix) derived from linguistic structure knowledge bases available for thousands of languages. We introduce a new cluster-consistent correlational neural network to construct the common semantic space by aligning words as well as clusters. Intrinsic evaluation on monolingual and multilingual QVEC tasks shows our approach achieves significantly higher correlation with linguistic features which are extracted from manually crafted lexical resources than state-of-the-art multi-lingual embedding learning methods do. Using low-resource language name tagging as a case study for extrinsic evaluation, our approach achieves up to 14.6% absolute F-score gain over the state of the art on cross-lingual direct transfer. Our approach is also shown to be robust even when the size of bilingual dictionary is small.
Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source … Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source character sequence to a target character sequence without any segmentation. We employ a character-level convolutional network with max-pooling at the encoder to reduce the length of source representation, allowing the model to be trained at a speed comparable to subword-level models while capturing local regularities. Our character-to-character model outperforms a recently proposed baseline with a subword-level encoder on WMT’15 DE-EN and CS-EN, and gives comparable performance on FI-EN and RU-EN. We then demonstrate that it is possible to share a single character-level encoder across multiple languages by training a model on a many-to-one translation task. In this multilingual setting, the character-level encoder significantly outperforms the subword-level encoder on all the language pairs. We observe that on CS-EN, FI-EN and RU-EN, the quality of the multilingual character-level translation even surpasses the models specifically trained on that language pair alone, both in terms of the BLEU score and human judgment.
In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There … In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.
Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an … Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an object, and their information exchange is bidirectional and of arbitrary duration. The multi-modal multi-step setting allows agents to develop an internal communication significantly closer to natural language, in that they share a single set of messages, and that the length of the conversation may vary according to the difficulty of the task. We examine these properties empirically using a dataset consisting of images and textual descriptions of mammals, where the agents are tasked with identifying the correct object. Our experiments indicate that a robust and efficient communication protocol emerges, where gradual information exchange informs better predictions and higher communication bandwidth improves generalization.
Generative adversarial networks (GANs) are a learning framework that rely on training a discriminator to estimate a measure of difference between a target and generated distributions. GANs, as normally formulated, … Generative adversarial networks (GANs) are a learning framework that rely on training a discriminator to estimate a measure of difference between a target and generated distributions. GANs, as normally formulated, rely on the generated samples being completely differentiable w.r.t. the generative parameters, and thus do not work for discrete data. We introduce a method for training GANs with discrete data that uses the estimated difference measure from the discriminator to compute importance weights for generated samples, thus providing a policy gradient for training the generator. The importance weights have a strong connection to the decision boundary of the discriminator, and we call our method boundary-seeking GANs (BGANs). We demonstrate the effectiveness of the proposed algorithm with discrete image and character-based natural language generation. In addition, the boundary-seeking objective extends to continuous data, which can be used to improve stability of training, and we demonstrate this on Celeba, Large-scale Scene Understanding (LSUN) bedrooms, and Imagenet without conditioning.
In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There … In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.
Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an … Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an object, and their information exchange is bidirectional and of arbitrary duration. The multi-modal multi-step setting allows agents to develop an internal communication significantly closer to natural language, in that they share a single set of messages, and that the length of the conversation may vary according to the difficulty of the task. We examine these properties empirically using a dataset consisting of images and textual descriptions of mammals, where the agents are tasked with identifying the correct object. Our experiments indicate that a robust and efficient communication protocol emerges, where gradual information exchange informs better predictions and higher communication bandwidth improves generalization.
We introduce a novel recurrent neural network (RNN) approach to account for temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI). Our approach directly parameterizes … We introduce a novel recurrent neural network (RNN) approach to account for temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI). Our approach directly parameterizes temporal dynamics through recurrent connections, which can be used to formulate blind source separation with a conditional (rather than marginal) independence assumption, which we call RNN-ICA. This formulation enables us to visualize the temporal dynamics of both first order (activity) and second order (directed connectivity) information in brain networks that are widely studied in a static sense, but not well-characterized dynamically. RNN-ICA predicts dynamics directly from the recurrent states of the RNN in both task and resting state fMRI. Our results show both task-related and group-differentiating directed connectivity.
We extend neural Turing machine (NTM) model into a dynamic neural Turing machine (D-NTM) by introducing a trainable memory addressing scheme. This addressing scheme maintains for each memory cell two … We extend neural Turing machine (NTM) model into a dynamic neural Turing machine (D-NTM) by introducing a trainable memory addressing scheme. This addressing scheme maintains for each memory cell two separate vectors, content and address vectors. This allows the D-NTM to learn a wide variety of location-based addressing strategies including both linear and nonlinear ones. We implement the D-NTM with both continuous, differentiable and discrete, non-differentiable read/write mechanisms. We investigate the mechanisms and effects of learning to read and write into a memory through experiments on Facebook bAbI tasks using both a feedforward and GRUcontroller. The D-NTM is evaluated on a set of Facebook bAbI tasks and shown to outperform NTM and LSTM baselines. We have done extensive analysis of our model and different variations of NTM on bAbI task. We also provide further experimental results on sequential pMNIST, Stanford Natural Language Inference, associative recall and copy tasks.
Interlingua based Machine Translation (MT) aims to encode multiple languages into a common linguistic representation and then decode sentences in multiple target languages from this representation. In this work we … Interlingua based Machine Translation (MT) aims to encode multiple languages into a common linguistic representation and then decode sentences in multiple target languages from this representation. In this work we explore this idea in the context of neural encoder decoder architectures, albeit on a smaller scale and without MT as the end goal. Specifically, we consider the case of three languages or modalities X, Z and Y wherein we are interested in generating sequences in Y starting from information available in X. However, there is no parallel training data available between X and Y but, training data is available between X &amp; Z and Z &amp; Y (as is often the case in many real world applications). Z thus acts as a pivot/bridge. An obvious solution, which is perhaps less elegant but works very well in practice is to train a two stage model which first converts from X to Z and then from Z to Y. Instead we explore an interlingua inspired solution which jointly learns to do the following (i) encode X and Z to a common representation and (ii) decode Y from this common representation. We evaluate our model on two tasks: (i) bridge transliteration and (ii) bridge captioning. We report promising results in both these applications and believe that this is a right step towards truly interlingua inspired encoder decoder architectures.
Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source … Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source character sequence to a target character sequence without any segmentation. We employ a character-level convolutional network with max-pooling at the encoder to reduce the length of source representation, allowing the model to be trained at a speed comparable to subword-level models while capturing local regularities. Our character-to-character model outperforms a recently proposed baseline with a subword-level encoder on WMT'15 DE-EN and CS-EN, and gives comparable performance on FI-EN and RU-EN. We then demonstrate that it is possible to share a single character-level encoder across multiple languages by training a model on a many-to-one translation task. In this multilingual setting, the character-level encoder significantly outperforms the subword-level encoder on all the language pairs. We observe that on CS-EN, FI-EN and RU-EN, the quality of the multilingual character-level translation even surpasses the models specifically trained on that language pair alone, both in terms of BLEU score and human judgment.
Recent advances in variational inference that make use of an inference or recognition network for training and evaluating deep directed graphical models have advanced well beyond traditional variational inference and … Recent advances in variational inference that make use of an inference or recognition network for training and evaluating deep directed graphical models have advanced well beyond traditional variational inference and Markov chain Monte Carlo methods. These techniques offer higher flexibility with simpler and faster inference; yet training and evaluation still remains a challenge. We propose a method for improving the per-example approximate posterior by iterative refinement, which can provide notable gains in maximizing the variational lower bound of the log likelihood and works with both continuous and discrete latent variables. We evaluate our approach as a method of training and evaluating directed graphical models. We show that, when used for training, iterative refinement improves the variational lower bound and can also improve the log-likelihood over related methods. We also show that iterative refinement can be used to get a better estimate of the log-likelihood in any directed model trained with mean-field inference.
Variational methods that rely on a recognition network to approximate the posterior of directed graphical models offer better inference and learning than previous methods. Recent advances that exploit the capacity … Variational methods that rely on a recognition network to approximate the posterior of directed graphical models offer better inference and learning than previous methods. Recent advances that exploit the capacity and flexibility in this approach have expanded what kinds of models can be trained. However, as a proposal for the posterior, the capacity of the recognition network is limited, which can constrain the representational power of the generative model and increase the variance of Monte Carlo estimates. To address these issues, we introduce an iterative refinement procedure for improving the approximate posterior of the recognition network and show that training with the refined posterior is competitive with state-of-the-art methods. The advantages of refinement are further evident in an increased effective sample size, which implies a lower variance of gradient estimates.
The task of associating images and videos with a natural language description has attracted a great amount of attention recently. Rapid progress has been made in terms of both developing … The task of associating images and videos with a natural language description has attracted a great amount of attention recently. Rapid progress has been made in terms of both developing novel algorithms and releasing new datasets. Indeed, the state-of-the-art results on some of the standard datasets have been pushed into the regime where it has become more and more difficult to make significant improvement. This work takes a step back, and begs two questions: what is the best performance one could possibly achieve on a specific dataset? and How many visual elements does a given model capture?. To answer the first question, we first utilize existing natural language parsers to extract key concepts from ground truth captions. Then a conditional language model is trained to reproduce the original captions given various amount of extracted conceptual hints. By adjusting the amount of visual hints to the language model, we establish empirically dataset-dependent upper bounds on various automatic evaluation metrics commonly used to compare models. We demonstrate the construction of such bounds on MS-COCO, YouTube2Text and LSMDC (a combination of M-VAD and MPII-MD). As an upper bound, it suggests the best possible performance one could achieve on a particular dataset. To answer the second question, the current state-of-the-art results are compared against the proposed upper bounds. Based on such a comparison, we experimentally quantify several important factors concerning image and video captioning: the number of visual concepts captured by different models, the trade-off between the amount of visual elements captured and their accuracy,and the intrinsic difficulty and blessing of different datasets.
This is a lecture note for the course DS-GA 3001 <Natural Language Understanding with Distributed Representation> at the Center for Data Science , New York University in Fall, 2015. As … This is a lecture note for the course DS-GA 3001 <Natural Language Understanding with Distributed Representation> at the Center for Data Science , New York University in Fall, 2015. As the name of the course suggests, this lecture note introduces readers to a neural network based approach to natural language understanding/processing. In order to make it as self-contained as possible, I spend much time on describing basics of machine learning and neural networks, only after which how they are used for natural languages is introduced. On the language front, I almost solely focus on language modelling and machine translation, two of which I personally find most fascinating and most fundamental to natural language understanding.
We replace the Hidden Markov Model (HMM) which is traditionally used in in continuous speech recognition with a bi-directional recurrent neural network encoder coupled to a recurrent neural network decoder … We replace the Hidden Markov Model (HMM) which is traditionally used in in continuous speech recognition with a bi-directional recurrent neural network encoder coupled to a recurrent neural network decoder that directly emits a stream of phonemes. The alignment between the input and output sequences is established using an attention mechanism: the decoder emits each symbol based on a context created with a subset of input symbols elected by the attention mechanism. We report initial results demonstrating that this new approach achieves phoneme error rates that are comparable to the state-of-the-art HMM-based decoders, on the TIMIT dataset.
The gesture recognition using motion capture data and depth sensors has recently drawn more attention in vision recognition. Currently most systems only classify dataset with a couple of dozens different … The gesture recognition using motion capture data and depth sensors has recently drawn more attention in vision recognition. Currently most systems only classify dataset with a couple of dozens different actions. Moreover, feature extraction from the data is often computational complex. In this paper, we propose a novel system to recognize the actions from skeleton data with simple, but effective, features using deep neural networks. Features are extracted for each frame based on the relative positions of joints (PO), temporal differences (TD), and normalized trajectories of motion (NT). Given these features a hybrid multi-layer perceptron is trained, which simultaneously classifies and reconstructs input data. We use deep autoencoder to visualize learnt features. The experiments show that deep neural networks can capture more discriminative information than, for instance, principal component analysis can. We test our system on a public database with 65 classes and more than 2,000 motion sequences. We obtain an accuracy above 95% which is, to our knowledge, the state of the art result for such a large dataset.
Abstract: Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that … Abstract: Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.
The dominant sequence transduction models are based on complex recurrent orconvolutional neural networks in an encoder and decoder configuration. The best performing such models also connect the encoder and decoder … The dominant sequence transduction models are based on complex recurrent orconvolutional neural networks in an encoder and decoder configuration. The best performing such models also connect the encoder and decoder through an attentionm echanisms. We propose a novel, simple network architecture based solely onan attention mechanism, dispensing with recurrence and convolutions entirely.Experiments on two machine translation tasks show these models to be superiorin quality while being more parallelizable and requiring significantly less timeto train. Our single model with 165 million parameters, achieves 27.5 BLEU onEnglish-to-German translation, improving over the existing best ensemble result by over 1 BLEU. On English-to-French translation, we outperform the previoussingle state-of-the-art with model by 0.7 BLEU, achieving a BLEU score of 41.1.
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has … We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
We present a novel per-dimension learning rate method for gradient descent called ADADELTA. The method dynamically adapts over time using only first order information and has minimal computational overhead beyond … We present a novel per-dimension learning rate method for gradient descent called ADADELTA. The method dynamically adapts over time using only first order information and has minimal computational overhead beyond vanilla stochastic gradient descent. The method requires no manual tuning of a learning rate and appears robust to noisy gradient information, different model architecture choices, various data modalities and selection of hyperparameters. We show promising results compared to other methods on the MNIST digit classification task using a single machine and on a large scale voice dataset in a distributed cluster environment.
Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014. Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014.
Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can … Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.
Neural machine translation (NMT) models typically operate with a fixed vocabulary, but translation is an open-vocabulary problem.Previous work addresses the translation of out-of-vocabulary words by backing off to a dictionary.In … Neural machine translation (NMT) models typically operate with a fixed vocabulary, but translation is an open-vocabulary problem.Previous work addresses the translation of out-of-vocabulary words by backing off to a dictionary.In this paper, we introduce a simpler and more effective approach, making the NMT model capable of open-vocabulary translation by encoding rare and unknown words as sequences of subword units.This is based on the intuition that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations).We discuss the suitability of different word segmentation techniques, including simple character ngram models and a segmentation based on the byte pair encoding compression algorithm, and empirically show that subword models improve over a back-off dictionary baseline for the WMT 15 translation tasks English→German and English→Russian by up to 1.1 and 1.3 BLEU, respectively.
Theano is a linear algebra compiler that optimizes a user's symbolically-specified mathematical computations to produce efficient low-level implementations. In this paper, we present new features and efficiency improvements to Theano, … Theano is a linear algebra compiler that optimizes a user's symbolically-specified mathematical computations to produce efficient low-level implementations. In this paper, we present new features and efficiency improvements to Theano, and benchmarks demonstrating Theano's performance relative to Torch7, a recently introduced machine learning library, and to RNNLM, a C++ library targeted at recurrent neural networks.
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly … Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be … Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
This paper shows how Long Short-term Memory recurrent neural networks can be used to generate complex sequences with long-range structure, simply by predicting one data point at a time. The … This paper shows how Long Short-term Memory recurrent neural networks can be used to generate complex sequences with long-range structure, simply by predicting one data point at a time. The approach is demonstrated for text (where the data are discrete) and online handwriting (where the data are real-valued). It is then extended to handwriting synthesis by allowing the network to condition its predictions on a text sequence. The resulting system is able to generate highly realistic cursive handwriting in a wide variety of styles.
An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation.However, there has been little work exploring … An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation.However, there has been little work exploring useful architectures for attention-based NMT.This paper examines two simple and effective classes of attentional mechanism: a global approach which always attends to all source words and a local one that only looks at a subset of source words at a time.We demonstrate the effectiveness of both approaches on the WMT translation tasks between English and German in both directions.With local attention, we achieve a significant gain of 5.0 BLEU points over non-attentional systems that already incorporate known techniques such as dropout.Our ensemble model using different attention architectures yields a new state-of-the-art result in the WMT'15 English to German translation task with 25.9 BLEU points, an improvement of 1.0 BLEU points over the existing best system backed by NMT and an n-gram reranker. 1
Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. 2017. Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. 2017.
Learning to communicate through interaction, rather than relying on explicit supervision, is often considered a prerequisite for developing a general AI. We study a setting where two agents engage in … Learning to communicate through interaction, rather than relying on explicit supervision, is often considered a prerequisite for developing a general AI. We study a setting where two agents engage in playing a referential game and, from scratch, develop a communication protocol necessary to succeed in this game. Unlike previous work, we require that messages they exchange, both at train and test time, are in the form of a language (i.e. sequences of discrete symbols). We compare a reinforcement learning approach and one using a differentiable relaxation (straight-through Gumbel-softmax estimator) and observe that the latter is much faster to converge and it results in more effective protocols. Interestingly, we also observe that the protocol we induce by optimizing the communication success exhibits a degree of compositionality and variability (i.e. the same information can be phrased in different ways), both properties characteristic of natural languages. As the ultimate goal is to ensure that communication is accomplished in natural language, we also perform experiments where we inject prior information about natural language into our model and study properties of the resulting protocol.
Neural Machine Translation (NMT) has obtained state-of-the art performance for several language pairs, while only using parallel data for training.Targetside monolingual data plays an important role in boosting fluency for … Neural Machine Translation (NMT) has obtained state-of-the art performance for several language pairs, while only using parallel data for training.Targetside monolingual data plays an important role in boosting fluency for phrasebased statistical machine translation, and we investigate the use of monolingual data for NMT.In contrast to previous work, which combines NMT models with separately trained language models, we note that encoder-decoder NMT architectures already have the capacity to learn the same information as a language model, and we explore strategies to train with monolingual data without changing the neural network architecture.By pairing monolingual training data with an automatic backtranslation, we can treat it as additional parallel training data, and we obtain substantial improvements on the WMT 15 task English↔German (+2.8-3.7 BLEU), and for the low-resourced IWSLT 14 task Turkish→English (+2.1-3.4BLEU), obtaining new state-of-the-art results.We also show that fine-tuning on in-domain monolingual and parallel data gives substantial improvements for the IWSLT 15 task English→German.
We propose multi-way, multilingual neural machine translation.The proposed approach enables a single neural translation model to translate between multiple languages, with a number of parameters that grows only linearly with … We propose multi-way, multilingual neural machine translation.The proposed approach enables a single neural translation model to translate between multiple languages, with a number of parameters that grows only linearly with the number of languages.This is made possible by having a single attention mechanism that is shared across all language pairs.We train the proposed multiway, multilingual model on ten language pairs from WMT'15 simultaneously and observe clear performance improvements over models trained on only one language pair.In particular, we observe that the proposed model significantly improves the translation quality of low-resource language pairs.
We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order … We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order to share information that is needed to solve the tasks. By embracing deep neural networks, we are able to demonstrate end-to-end learning of protocols in complex environments inspired by communication riddles and multi-agent computer vision problems with partial observability. We propose two approaches for learning in these domains: Reinforced Inter-Agent Learning (RIAL) and Differentiable Inter-Agent Learning (DIAL). The former uses deep Q-learning, while the latter exploits the fact that, during learning, agents can backpropagate error derivatives through (noisy) communication channels. Hence, this approach uses centralised learning but decentralised execution. Our experiments introduce new environments for studying the learning of communication protocols and present a set of engineering innovations that are essential for success in these domains.
Highly expressive directed latent variable models, such as sigmoid belief networks, are difficult to train on large datasets because exact inference in them is intractable and none of the approximate … Highly expressive directed latent variable models, such as sigmoid belief networks, are difficult to train on large datasets because exact inference in them is intractable and none of the approximate inference methods that have been applied to them scale well. We propose a fast non-iterative approximate inference method that uses a feedforward network to implement efficient exact sampling from the variational posterior. The model and this inference network are trained jointly by maximizing a variational lower bound on the log-likelihood. Although the naive estimator of the inference model gradient is too high-variance to be useful, we make it practical by applying several straightforward model-independent variance reduction techniques. Applying our approach to training sigmoid belief networks and deep autoregressive networks, we show that it outperforms the wake-sleep algorithm on MNIST and achieves state-of-the-art results on the Reuters RCV1 document dataset.
In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a … In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixed-length vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder-Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases.
Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where … Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where the input-output alignment is unknown. The combination of these methods with the Long Short-term Memory RNN architecture has proved particularly fruitful, delivering state-of-the-art results in cursive handwriting recognition. However RNN performance in speech recognition has so far been disappointing, with better results returned by deep feedforward networks. This paper investigates deep recurrent neural networks, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs. When trained end-to-end with suitable regularisation, we find that deep Long Short-term Memory RNNs achieve a test set error of 17.7% on the TIMIT phoneme recognition benchmark, which to our knowledge is the best recorded score.
We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, … We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.
When a large feedforward neural network is trained on a small training set, it typically performs poorly on held-out test data. This "overfitting" is greatly reduced by randomly omitting half … When a large feedforward neural network is trained on a small training set, it typically performs poorly on held-out test data. This "overfitting" is greatly reduced by randomly omitting half of the feature detectors on each training case. This prevents complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors. Instead, each neuron learns to detect a feature that is generally helpful for producing the correct answer given the combinatorially large variety of internal contexts in which it must operate. Random "dropout" gives big improvements on many benchmark tasks and sets new records for speech and object recognition.
We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to … We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-qa.com
Neural machine translation is a relatively new approach to statistical machine translation based purely on neural networks.The neural machine translation models often consist of an encoder and a decoder.The encoder … Neural machine translation is a relatively new approach to statistical machine translation based purely on neural networks.The neural machine translation models often consist of an encoder and a decoder.The encoder extracts a fixed-length representation from a variable-length input sentence, and the decoder generates a correct translation from this representation.In this paper, we focus on analyzing the properties of the neural machine translation using two models; RNN Encoder-Decoder and a newly proposed gated recursive convolutional neural network.We show that the neural machine translation performs relatively well on short sentences without unknown words, but its performance degrades rapidly as the length of the sentence and the number of unknown words increase.Furthermore, we find that the proposed gated recursive convolutional network learns a grammatical structure of a sentence automatically.
After a more than decade-long period of relatively little research activity in the area of recurrent neural networks, several new developments will be reviewed here that have allowed substantial progress … After a more than decade-long period of relatively little research activity in the area of recurrent neural networks, several new developments will be reviewed here that have allowed substantial progress both in understanding and in technical solutions towards more efficient training of recurrent networks. These advances have been motivated by and related to the optimization issues surrounding deep learning. Although recurrent networks are extremely powerful in what they can in principle represent in terms of modeling sequences, their training is plagued by two aspects of the same issue regarding the learning of long-term dependencies. Experiments reported here evaluate the use of clipping gradients, spanning longer time ranges with leaky integration, advanced momentum techniques, using more powerful output probability models, and encouraging sparser gradients to help symmetry breaking and credit assignment. The experiments are performed on text and music data and show off the combined effects of these techniques in generally improving both training and test error.
The current mainstream approach to train natural language systems is to expose them to large amounts of text. This passive learning is problematic if we are interested in developing interactive … The current mainstream approach to train natural language systems is to expose them to large amounts of text. This passive learning is problematic if we are interested in developing interactive machines, such as conversational agents. We propose a framework for language learning that relies on multi-agent communication. We study this learning in the context of referential games. In these games, a sender and a receiver see a pair of images. The sender is told one of them is the target and is allowed to send a message from a fixed, arbitrary vocabulary to the receiver. The receiver must rely on this message to identify the target. Thus, the agents develop their own language interactively out of the need to communicate. We show that two networks with simple configurations are able to learn to coordinate in the referential game. We further explore how to make changes to the game environment to cause the word meanings induced in the game to better reflect intuitive semantic properties of the images. In addition, we present a simple strategy for grounding the agents' code into natural language. Both of these are necessary steps towards developing machines that are able to communicate with humans productively.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an … The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
Machine translation has recently achieved impressive performance thanks to recent advances in deep learning and the availability of large-scale parallel corpora. There have been numerous attempts to extend these successes … Machine translation has recently achieved impressive performance thanks to recent advances in deep learning and the availability of large-scale parallel corpora. There have been numerous attempts to extend these successes to low-resource language pairs, yet requiring tens of thousands of parallel sentences. In this work, we take this research direction to the extreme and investigate whether it is possible to learn to translate even without any parallel data. We propose a model that takes sentences from monolingual corpora in two different languages and maps them into the same latent space. By learning to reconstruct in both languages from this shared feature space, the model effectively learns to translate without using any labeled data. We demonstrate our model on two widely used datasets and two language pairs, reporting BLEU scores of 32.8 and 15.1 on the Multi30k and WMT English-French datasets, without using even a single parallel sentence at training time.
The field of machine translation faces an under-recognized problem because of inconsistency in the reporting of scores from its dominant metric. Although people refer to “the” BLEU score, BLEU is … The field of machine translation faces an under-recognized problem because of inconsistency in the reporting of scores from its dominant metric. Although people refer to “the” BLEU score, BLEU is in fact a parameterized metric whose values can vary wildly with changes to these parameters. These parameters are often not reported or are hard to find, and consequently, BLEU scores between papers cannot be directly compared. I quantify this variation, finding differences as high as 1.8 between commonly used configurations. The main culprit is different tokenization and normalization schemes applied to the reference. Pointing to the success of the parsing community, I suggest machine translation researchers settle upon the BLEU scheme used by the annual Conference on Machine Translation (WMT), which does not allow for user-supplied reference processing, and provide a new tool, SACREBLEU, to facilitate this.
We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order … We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order to share information that is needed to solve the tasks. By embracing deep neural networks, we are able to demonstrate end-to-end learning of protocols in complex environments inspired by communication riddles and multi-agent computer vision problems with partial observability. We propose two approaches for learning in these domains: Reinforced Inter-Agent Learning (RIAL) and Differentiable Inter-Agent Learning (DIAL). The former uses deep Q-learning, while the latter exploits the fact that, during learning, agents can backpropagate error derivatives through (noisy) communication channels. Hence, this approach uses centralised learning but decentralised execution. Our experiments introduce new environments for studying the learning of communication protocols and present a set of engineering innovations that are essential for success in these domains.
Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a … Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words. In this paper, we propose a new approach based on the skipgram model, where each word is represented as a bag of character n-grams. A vector representation is associated to each character n-gram; words being represented as the sum of these representations. Our method is fast, allowing to train models on large corpora quickly and allows us to compute word representations for words that did not appear in the training data. We evaluate our word representations on nine different languages, both on word similarity and analogy tasks. By comparing to recently proposed morphological word representations, we show that our vectors achieve state-of-the-art performance on these tasks.
There are two widely known issues with properly training Recurrent Neural Networks, the vanishing and the exploding gradient problems detailed in Bengio et al. (1994). In this paper we attempt … There are two widely known issues with properly training Recurrent Neural Networks, the vanishing and the exploding gradient problems detailed in Bengio et al. (1994). In this paper we attempt to improve the understanding of the underlying issues by exploring these problems from an analytical, a geometric and a dynamical systems perspective. Our analysis is used to justify a simple yet effective solution. We propose a gradient norm clipping strategy to deal with exploding gradients and a soft constraint for the vanishing gradients problem. We validate empirically our hypothesis and proposed solutions in the experimental section.
In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There … In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.
We participated in the WMT 2016 shared news translation task by building neural translation systems for four language pairs, each trained in both directions:English↔Czech, English↔German, English↔Romanian and English↔Russian.Our systems are … We participated in the WMT 2016 shared news translation task by building neural translation systems for four language pairs, each trained in both directions:English↔Czech, English↔German, English↔Romanian and English↔Russian.Our systems are based on an attentional encoder-decoder, using BPE subword segmentation for open-vocabulary translation with a fixed vocabulary.We experimented with using automatic back-translations of the monolingual News corpus as additional training data, pervasive dropout, and target-bidirectional models.All reported methods give substantial improvements, and we see improvements of 4.3-11.2BLEU over our baseline systems.In the human evaluation, our systems were the (tied) best constrained system for 7 out of 8 translation directions in which we participated. 12
Much of human dialogue occurs in semi-cooperative settings, where agents with different goals attempt to agree on common decisions. Negotiations require complex communication and reasoning skills, but success is easy … Much of human dialogue occurs in semi-cooperative settings, where agents with different goals attempt to agree on common decisions. Negotiations require complex communication and reasoning skills, but success is easy to measure, making this an interesting task for AI. We gather a large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each other’s reward functions must reach an agreement (or a deal) via natural language dialogue. For the first time, we show it is possible to train end-to-end models for negotiation, which must learn both linguistic and reasoning skills with no annotated dialogue states. We also introduce dialogue rollouts, in which the model plans ahead by simulating possible complete continuations of the conversation, and find that this technique dramatically improves performance. Our code and dataset are publicly available.
Deep neural networks have enabled progress in a wide variety of applications. Growing the size of the neural network typically results in improved accuracy. As model sizes grow, the memory … Deep neural networks have enabled progress in a wide variety of applications. Growing the size of the neural network typically results in improved accuracy. As model sizes grow, the memory and compute requirements for training these models also increases. We introduce a technique to train deep neural networks using half precision floating point numbers. In our technique, weights, activations and gradients are stored in IEEE half-precision format. Half-precision floating numbers have limited numerical range compared to single-precision numbers. We propose two techniques to handle this loss of information. Firstly, we recommend maintaining a single-precision copy of the weights that accumulates the gradients after each optimizer step. This single-precision copy is rounded to half-precision format during training. Secondly, we propose scaling the loss appropriately to handle the loss of information with half-precision gradients. We demonstrate that this approach works for a wide variety of models including convolution neural networks, recurrent neural networks and generative adversarial networks. This technique works for large scale models with more than 100 million parameters trained on large datasets. Using this approach, we can reduce the memory consumption of deep learning models by nearly 2x. In future processors, we can also expect a significant computation speedup using half-precision hardware units.
Multi-hop question answering requires a model to connect multiple pieces of evidence scattered in a long context to answer the question. In this paper, we show that in the multi-hop … Multi-hop question answering requires a model to connect multiple pieces of evidence scattered in a long context to answer the question. In this paper, we show that in the multi-hop HotpotQA (Yang et al., 2018) dataset, the examples often contain reasoning shortcuts through which models can directly locate the answer by word-matching the question with a sentence in the context. We demonstrate this issue by constructing adversarial documents that create contradicting answers to the shortcut but do not affect the validity of the original answer. The performance of strong baseline models drops significantly on our adversarial test, indicating that they are indeed exploiting the shortcuts rather than performing multi-hop reasoning. After adversarial training, the baseline's performance improves but is still limited on the adversarial test. Hence, we use a control unit that dynamically attends to the question at different reasoning hops to guide the model's multi-hop reasoning. We show that our 2-hop model trained on the regular data is more robust to the adversaries than the baseline. After adversarial training, it not only achieves significant improvements over its counterpart trained on regular data, but also outperforms the adversarially-trained baseline significantly. Finally, we sanity-check that these improvements are not obtained by exploiting potential new shortcuts in the adversarial data, but indeed due to robust multi-hop reasoning skills of the models.
Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be … Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, Christopher D. Manning. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018. Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, Christopher D. Manning. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.
We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a … We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a highway network over characters, whose output is given to a long short-term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-the-art despite having 60% fewer parameters. On languages with rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model outperforms word-level/morpheme-level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are sufficient for language modeling. Analysis of word representations obtained from the character composition part of the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.
Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. Proceedings of the 2019 Conference of the North American Chapter of the Association for … Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations). 2019.
It has previously been hypothesized, and supported with some experimental evidence, that deeper representations, when well trained, tend to do a better job at disentangling the underlying factors of variation. … It has previously been hypothesized, and supported with some experimental evidence, that deeper representations, when well trained, tend to do a better job at disentangling the underlying factors of variation. We study the following related conjecture: better representations, in the sense of better disentangling, can be exploited to produce faster-mixing Markov chains. Consequently, mixing would be more efficient at higher levels of representation. To better understand why and how this is happening, we propose a secondary conjecture: the higher-level samples fill more uniformly the space they occupy and the high-density manifolds tend to unfold when represented at higher levels. The paper discusses these hypotheses and tests them experimentally through visualization and measurements of mixing and interpolating between samples.
Multi-hop Reading Comprehension (RC) requires reasoning and aggregation across several paragraphs. We propose a system for multi-hop RC that decomposes a compositional question into simpler sub-questions that can be answered … Multi-hop Reading Comprehension (RC) requires reasoning and aggregation across several paragraphs. We propose a system for multi-hop RC that decomposes a compositional question into simpler sub-questions that can be answered by off-the-shelf single-hop RC models. Since annotations for such decomposition are expensive, we recast subquestion generation as a span prediction problem and show that our method, trained using only 400 labeled examples, generates sub-questions that are as effective as human-authored sub-questions. We also introduce a new global rescoring approach that considers each decomposition (i.e. the sub-questions and their answers) to select the best final answer, greatly improving overall performance. Our experiments on HotpotQA show that this approach achieves the state-of-the-art results, while providing explainable evidence for its decision making in the form of sub-questions.
Multi-hop reading comprehension (RC) questions are challenging because they require reading and reasoning over multiple paragraphs. We argue that it can be difficult to construct large multi-hop RC datasets. For … Multi-hop reading comprehension (RC) questions are challenging because they require reading and reasoning over multiple paragraphs. We argue that it can be difficult to construct large multi-hop RC datasets. For example, even highly compositional questions can be answered with a single hop if they target specific entity types, or the facts needed to answer them are redundant. Our analysis is centered on HotpotQA, where we show that single-hop reasoning can solve much more of the dataset than previously thought. We introduce a single-hop BERT-based RC model that achieves 67 F1—comparable to state-of-the-art multi-hop models. We also design an evaluation setting where humans are not shown all of the necessary paragraphs for the intended multi-hop reasoning but can still answer over 80% of questions. Together with detailed error analysis, these results suggest there should be an increasing focus on the role of evidence in multi-hop reasoning and possibly even a shift towards information retrieval style evaluations with large and diverse evidence collections.
When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover short-comings. Existing benchmarks for visual question … When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover short-comings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate multiple sources of error, making it hard to pinpoint model weaknesses. We present a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations.
Cross-language learning allows us to use training data from one language to build models for a different language. Many approaches to bilingual learning require that we have word-level alignment of … Cross-language learning allows us to use training data from one language to build models for a different language. Many approaches to bilingual learning require that we have word-level alignment of sentences from parallel corpora. In this work we explore the use of autoencoder-based methods for cross-language learning of vectorial word representations that are aligned between two languages, while not relying on word-level alignments. We show that by simply learning to reconstruct the bag-of-words representations of aligned sentences, within and between languages, we can in fact learn high-quality representations and do without word alignments. Since training autoencoders on word observations presents certain computational issues, we propose and compare different variations adapted to this setting. We also propose an explicit correlation maximizing regularizer that leads to significant improvement in the performance. We empirically investigate the success of our approach on the problem of cross-language test classification, where a classifier trained on a given language (e.g., English) must learn to generalize to a different language (e.g., German). These experiments demonstrate that our approaches are competitive with the state-of-the-art, achieving up to 10-14 percentage point improvements over the best reported results on this task.
Books are a rich source of both fine-grained information, how a character, an object or a scene looks like, as well as high-level semantics, what someone is thinking, feeling and … Books are a rich source of both fine-grained information, how a character, an object or a scene looks like, as well as high-level semantics, what someone is thinking, feeling and how these states evolve through a story. This paper aims to align books to their movie releases in order to provide rich descriptive explanations for visual content that go semantically far beyond the captions available in the current datasets. To align movies and books we propose a neural sentence embedding that is trained in an unsupervised way from a large corpus of books, as well as a video-text neural embedding for computing similarities between movie clips and sentences in the book. We propose a context-aware CNN to combine information from multiple sources. We demonstrate good quantitative performance for movie/book alignment and show several qualitative examples that showcase the diversity of tasks our model can be used for.
Learning your first language is an incredible feat and not easily duplicated. Doing this using nothing but a few pictureless books, a corpus, would likely be impossible even for humans. … Learning your first language is an incredible feat and not easily duplicated. Doing this using nothing but a few pictureless books, a corpus, would likely be impossible even for humans. As an alternative we propose to use situated interactions between agents as a driving force for communication, and the framework of Deep Recurrent Q-Networks (DRQN) for learning a common language grounded in the provided environment. We task the agents with interactive image search in the form of the game Guess Who?. The images from the game provide a non trivial environment for the agents to discuss and a natural grounding for the concepts they decide to encode in their communication. Our experiments show that it is possible to learn this task using DRQN and even more importantly that the words the agents use correspond to physical attributes present in the images that make up the agents environment.
Stochastic neurons and hard non-linearities can be useful for a number of reasons in deep learning models, but in many cases they pose a challenging problem: how to estimate the … Stochastic neurons and hard non-linearities can be useful for a number of reasons in deep learning models, but in many cases they pose a challenging problem: how to estimate the gradient of a loss function with respect to the input of such stochastic or non-smooth neurons? I.e., can we "back-propagate" through these stochastic neurons? We examine this question, existing approaches, and compare four families of solutions, applicable in different settings. One of them is the minimum variance unbiased gradient estimator for stochatic binary neurons (a special case of the REINFORCE algorithm). A second approach, introduced here, decomposes the operation of a binary stochastic neuron into a stochastic binary part and a smooth differentiable part, which approximates the expected effect of the pure stochatic binary neuron to first order. A third approach involves the injection of additive or multiplicative noise in a computational graph that is otherwise differentiable. A fourth approach heuristically copies the gradient with respect to the stochastic output directly as an estimator of the gradient with respect to the sigmoid argument (we call this the straight-through estimator). To explore a context where these estimators are useful, we consider a small-scale version of {\em conditional computation}, where sparse stochastic units form a distributed representation of gaters that can turn off in combinatorially many ways large chunks of the computation performed in the rest of the neural network. In this case, it is important that the gating units produce an actual 0 most of the time. The resulting sparsity can be potentially be exploited to greatly reduce the computational cost of large deep networks for which conditional computation would be useful.
A distinguishing property of human intelligence is the ability to flexibly use language in order to communicate complex ideas with other humans in a variety of contexts. Research in natural … A distinguishing property of human intelligence is the ability to flexibly use language in order to communicate complex ideas with other humans in a variety of contexts. Research in natural language dialogue should focus on designing communicative agents which can integrate themselves into these contexts and productively collaborate with humans. In this abstract, we propose a general situated language learning paradigm which is designed to bring about robust language agents able to cooperate productively with humans.