Yew-Soon Ong

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Dynamic Multimodal Sentiment Analysis: Leveraging Cross-Modal Attention for Enabled Classification 2025 Hui Sung Lee
Singh Suniljit
Yew-Soon Ong
+ PDF Chat FedRLHF: A Convergence-Guaranteed Federated Framework for Privacy-Preserving and Personalized RLHF 2024 Flint Xiaofeng Fan
Cheston Tan
Yew-Soon Ong
Roger Wattenhofer
Wei Tsang Ooi
+ PDF Chat The Digital Ecosystem of Beliefs: does evolution favour AI over humans? 2024 David M. Bossens
Shanshan Feng
Yew-Soon Ong
+ PDF Chat Pushing Rendering Boundaries: Hard Gaussian Splatting 2024 Qingshan Xu
Jiequan Cui
Xuanyu Yi
Yuxuan Wang
Yuan Zhou
Yew-Soon Ong
Hanwang Zhang
+ PDF Chat MRP-LLM: Multitask Reflective Large Language Models for Privacy-Preserving Next POI Recommendation 2024 Zhigang Wu
Zhu Sun
Dongxia Wang
Lu Zhang
Jie Zhang
Yew-Soon Ong
+ PDF Chat Generative AI as a Tool or Leader? Exploring AI-Augmented Thinking in Student Programming Tasks 2024 Tianlong Zhong
Gaoxia Zhu
Kian Yew Lim
Yew-Soon Ong
+ PDF Chat Video Set Distillation: Information Diversification and Temporal Densification 2024 Yinjie Zhao
Heng Zhao
Bihan Wen
Yew-Soon Ong
Joey Tianyi Zhou
+ PDF Chat Prototype Optimization with Neural ODE for Few-Shot Learning 2024 Baoquan Zhang
Shanshan Feng
Bingqi Shan
Xutao Li
Yunming Ye
Yew-Soon Ong
+ PDF Chat Language Model Evolutionary Algorithms for Recommender Systems: Benchmarks and Algorithm Comparisons 2024 Jiao Liu
Zhu Sun
Shanshan Feng
Yew-Soon Ong
+ PDF Chat Dockformer: A transformer-based molecular docking paradigm for large-scale virtual screening 2024 Zhangfan Yang
Junkai Ji
Shan He
Jianqiang Li
Ruibin Bai
Zexuan Zhu
Yew-Soon Ong
+ PDF Chat Enhancing Adversarial Robustness via Uncertainty-Aware Distributional Adversarial Training 2024 Junhao Dong
Xinghua Qu
Z. Jane Wang
Yew-Soon Ong
+ PDF Chat Towards Harmless Rawlsian Fairness Regardless of Demographic Prior 2024 Xuanqian Wang
Jing Li
Ivor W. Tsang
Yew-Soon Ong
+ PDF Chat Hybrid Memetic Search for Electric Vehicle Routing with Time Windows, Simultaneous Pickup-Delivery, and Partial Recharges 2024 Z. Zheng
Shengcai Liu
Yew-Soon Ong
+ PDF Chat Few-shot NeRF by Adaptive Rendering Loss Regularization 2024 Qingshan Xu
Xuanyu Yi
Jianyao Xu
Wenbing Tao
Yew-Soon Ong
Hanwang Zhang
+ PDF Chat ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference 2024 Xin He
Shunkang Zhang
Yuxin Wang
Haiyan Yin
Zihao Zeng
Shaohuai Shi
Zhenheng Tang
Xiaowen Chu
Ivor W. Tsang
Yew-Soon Ong
+ PDF Chat Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection 2024 Jiawen Zhu
Yew-Soon Ong
Yunhang Shen
Guansong Pang
+ PDF Chat Benchmarking Data Heterogeneity Evaluation Approaches for Personalized Federated Learning 2024 Zhilong Li
Xiaohu Wu
Xiaoli Tang
Tiantian He
Yew-Soon Ong
Mengmeng Chen
Qiqi Liu
Qicheng Lao
Xiaoxiao Li
Han Yu
+ PDF Chat Learning Structurally Stabilized Representations for Multi-modal Lossless DNA Storage 2024 Ben Cao
Tiantian He
Xue Li
Bin Wang
Xiaohu Wu
Qiang Zhang
Yew-Soon Ong
+ PDF Chat Large Language Models for Intent-Driven Session Recommendations 2024 Zhu Sun
Hongyang Liu
Xinghua Qu
Kaidong Feng
Yan Wang
Yew-Soon Ong
+ PDF Chat Adaptive In-Context Learning with Large Language Models for Bundle Generation 2024 Zhu Sun
Kaidong Feng
Jie Yang
Xinghua Qu
Hui Fang
Yew-Soon Ong
Wenyuan Liu
+ PDF Chat Prompt Evolutionary Design Optimization with Generative Shape and Vision-Language models 2024 Melvin Wong
Thiago Rios
Stefan Menzel
Yew-Soon Ong
+ PDF Chat Large Language Models as Evolutionary Optimizers 2024 Shengcai Liu
Caishun Chen
Xinghua Qu
Ke Tang
Yew-Soon Ong
+ PDF Chat Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization 2024 Jiao Liu
Abhishek Gupta
Yew-Soon Ong
+ PDF Chat Virtual Co-Pilot: Multimodal Large Language Model-enabled Quick-access Procedures for Single Pilot Operations 2024 Fan Li
Shanshan Feng
Yuqi Yan
Ching-Hung Lee
Yew-Soon Ong
+ PDF Chat Human-Generative AI Collaborative Problem Solving Who Leads and How Students Perceive the Interactions 2024 Gaoxia Zhu
Vidya K. Sudarshan
Jason Fok Kow
Yew-Soon Ong
+ PDF Chat LLM2FEA: Discover Novel Designs with Generative Evolutionary Multitasking 2024 Melvin Wong
Jiao Liu
Thiago Rios
Stefan Menzel
Yew-Soon Ong
+ PDF Chat Generative AI-based Prompt Evolution Engineering Design Optimization With Vision-Language Model 2024 Melvin Wong
Thiago Rios
Stefan Menzel
Yew-Soon Ong
+ PDF Chat Road Network Representation Learning with the Third Law of Geography 2024 Haicang Zhou
Wei‐Ming Huang
Yile Chen
Tiantian He
Gao Cong
Yew-Soon Ong
+ PDF Chat Covariance-Adaptive Sequential Black-box Optimization for Diffusion Targeted Generation 2024 Yueming Lyu
Kim Yong Tan
Yew-Soon Ong
Ivor W. Tsang
+ PDF Chat Learning Mixture-of-Experts for General-Purpose Black-Box Discrete Optimization 2024 Shengcai Liu
Zhiyuan Wang
Yew-Soon Ong
Xin Yao
Ke Tang
+ PDF Chat SIG: Efficient Self-Interpretable Graph Neural Network for Continuous-time Dynamic Graphs 2024 Lanting Fang
Yulian Yang
Kai Wang
Shanshan Feng
Kaiyu Feng
Jie Gui
Shuliang Wang
Yew-Soon Ong
+ PDF Chat Human-Generative AI Collaborative Problem Solving Who Leads and How Students Perceive the Interactions 2024 Gaoxia Zhu
Vidya K. Sudarshan
Jason Fok Kow
Yew-Soon Ong
+ PDF Chat Bridging the Gap Between Theory and Practice: Benchmarking Transfer Evolutionary Optimization 2024 Yaqing Hou
Wenqiang Ma
Abhishek Gupta
Kavitesh Kumar Bali
Hongwei Ge
Qiang Zhang
Carlos A. Coello Coello
Yew-Soon Ong
+ PDF Chat Where to Move Next: Zero-shot Generalization of LLMs for Next POI Recommendation 2024 Shanshan Feng
Haoming Lyu
Caishun Chen
Yew-Soon Ong
+ PDF Chat A Simple Yet Effective Approach for Diversified Session-Based Recommendation 2024 Qing Yin
Hui Fang
Zhu Sun
Yew-Soon Ong
+ PDF Chat Virtual Co-Pilot: Multimodal Large Language Model-enabled Quick-access Procedures for Single Pilot Operations 2024 Fan Li
Shanshan Feng
Yuqi Yan
Ching-Hung Lee
Yew-Soon Ong
+ PDF Chat FedCompetitors: Harmonious Collaboration in Federated Learning with Competing Participants 2024 Shanli Tan
Hao Cheng
Xiaohu Wu
Han Yu
Tiantian He
Yew-Soon Ong
Chongjun Wang
Xiaofeng Tao
+ PDF Chat Multi-Task Learning with Multi-Task Optimization 2024 Lu Bai
Abhishek Gupta
Yew-Soon Ong
+ PDF Chat Make Me Happier: Evoking Emotions Through Image Diffusion Models 2024 Qing Lin
Jingfeng Zhang
Yew-Soon Ong
Mengmi Zhang
+ PDF Chat LIST: Learning to Index Spatio-Textual Data for Embedding based Spatial Keyword Queries 2024 Ziqi Yin
Shanshan Feng
Shang Liu
Gao Cong
Yew-Soon Ong
Bin Cui
+ PDF Chat Chance-Constrained Multiple-Choice Knapsack Problem: Model, Algorithms, and Applications 2024 Xuanfeng Li
Shengcai Liu
Jin Wang
Xiao Chen
Yew-Soon Ong
Ke Tang
+ PDF Chat DivDiff: A Conditional Diffusion Model for Diverse Human Motion Prediction 2024 Hua Yu
Yaqing Hou
Wenbin Pei
Yew-Soon Ong
Qiang Zhang
+ PDF Chat Jack and Masters of all Trades: One-Pass Learning Sets of Model Sets From Large Pre-Trained Models 2023 Han Xiang Choong
Yew-Soon Ong
Abhishek Gupta
Caishun Chen
Ray Lim
+ PDF Chat Towards Building Voice-based Conversational Recommender Systems: Datasets, Potential Solutions and Prospects 2023 Xinghua Qu
Hongyang Liu
Zhu Sun
Xiang Yin
Yew-Soon Ong
Lu Lu
Zejun Ma
+ Neuroevolution of Physics-Informed Neural Nets: Benchmark Problems and Comparative Results 2023 Nicholas Sung
Jian Cheng Wong
Chin Chun Ooi
Abhishek Gupta
Pao‐Hsiung Chiu
Yew-Soon Ong
+ PDF Chat LSA-PINN: Linear Boundary Connectivity Loss for Solving PDEs on Complex Geometry 2023 Jian Cheng Wong
Pao‐Hsiung Chiu
Chin Chun Ooi
My Ha Dao
Yew-Soon Ong
+ PDF Chat Learning Multitask Gaussian Process Over Heterogeneous Input Domains 2023 Haitao Liu
Kai Wu
Yew-Soon Ong
Chao Bian
Xiaomo Jiang
Xiaofang Wang
+ PDF Chat Prompt Evolution for Generative AI: A Classifier-Guided Approach 2023 Melvin Wong
Yew-Soon Ong
Abhishek Gupta
Kavitesh Kumar Bali
Caishun Chen
+ Understanding Diversity in Session-based Recommendation 2023 Yin Qing
Hui Fang
Zhu Sun
Yew-Soon Ong
+ A Multi-channel Next POI Recommendation Framework with Multi-granularity Check-in Signals 2023 Zhu Sun
Yu Lei
Lu Zhang
Chen Li
Yew-Soon Ong
Jie Zhang
+ PDF Chat A Generic Reinforced Explainable Framework with Knowledge Graph for Session-based Recommendation 2023 Huizi Wu
Hui Fang
Zhu Sun
Cong Geng
Xinyu Kong
Yew-Soon Ong
+ LSA-PINN: Linear Boundary Connectivity Loss for Solving PDEs on Complex Geometry 2023 Jian Cheng Wong
Pao‐Hsiung Chiu
Chin Chun Ooi
My Ha Dao
Yew-Soon Ong
+ Policy Dispersion in Non-Markovian Environment 2023 Bohao Qu
Xiaofeng Cao
Jielong Yang
Hechang Chen
Chang Yi
Ivor W. Tsang
Yew-Soon Ong
+ Unfolded Self-Reconstruction LSH: Towards Machine Unlearning in Approximate Nearest Neighbour Search 2023 Kim Yong Tan
Yueming Lyu
Yew-Soon Ong
Ivor W. Tsang
+ Bayesian Federated Learning: A Survey 2023 Longbing Cao
Hui Chen
Xuhui Fan
João Gama
Yew-Soon Ong
Vipin Kumar
+ Prompt Evolution for Generative AI: A Classifier-Guided Approach 2023 Melvin Wong
Yew-Soon Ong
Abhishek Gupta
Kavitesh Kumar Bali
Caishun Chen
+ Chance-Constrained Multiple-Choice Knapsack Problem: Model, Algorithms, and Applications 2023 Xuanfeng Li
Shengcai Liu
Jin Wang
Xiaohong Chen
Yew-Soon Ong
Ke Tang
+ Meta-learning enhanced next POI recommendation by leveraging check-ins from auxiliary cities 2023 Jinze Wang
Lu Zhang
Zhu Sun
Yew-Soon Ong
+ Neural Influence Estimator: Towards Real-time Solutions to Influence Blocking Maximization 2023 Wenjie Chen
Shengcai Liu
Yew-Soon Ong
Ke Tang
+ MosaicFusion: Diffusion Models as Data Augmenters for Large Vocabulary Instance Segmentation 2023 Jiahao Xie
Wei Li
Xiangtai Li
Ziwei Liu
Yew-Soon Ong
Chen Change Loy
+ HPCR: Holistic Proxy-based Contrastive Replay for Online Continual Learning 2023 Huiwei Lin
Shanshan Feng
Baoquan Zhang
Xutao Li
Yew-Soon Ong
Yunming Ye
+ Large Language Models as Evolutionary Optimizers 2023 Shengcai Liu
Caishun Chen
Xinghua Qu
Ke Tang
Yew-Soon Ong
+ Generalizable Neural Physics Solvers by Baldwinian Evolution 2023 Jian Cheng Wong
Chin Chun Ooi
Abhishek Gupta
Pao‐Hsiung Chiu
Joshua Shao Zheng Low
My Ha Dao
Yew-Soon Ong
+ Large Language Models for Intent-Driven Session Recommendations 2023 Zhu Sun
Hongyang Liu
Xinghua Qu
Kaidong Feng
Yan Wang
Yew-Soon Ong
+ FedCompetitors: Harmonious Collaboration in Federated Learning with Competing Participants 2023 Shanli Tan
Hao Cheng
Xiaohu Wu
Han Yu
Tiantian He
Yew-Soon Ong
Chongjun Wang
Xiaofeng Tao
+ PR-NeuS: A Prior-based Residual Learning Paradigm for Fast Multi-view Neural Surface Reconstruction 2023 Jianyao Xu
Qingshan Xu
Xinyao Liao
Wanjuan Su
Chen Zhang
Yew-Soon Ong
Wenbing Tao
+ Inverse Transfer Multiobjective Optimization 2023 Jiao Liu
Abhishek Gupta
Yew-Soon Ong
+ Dynamic In-Context Learning from Nearest Neighbors for Bundle Generation 2023 Zhu Sun
Kaidong Feng
Jie Yang
Xinghua Qu
Hui Fang
Yew-Soon Ong
Wenyuan Liu
+ PDF Chat DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation 2022 Zhu Sun
Hui Fang
Jie Yang
Xinghua Qu
Hongyang Liu
Di Yu
Yew-Soon Ong
Jie Zhang
+ PDF Chat Multitask Neuroevolution for Reinforcement Learning With Long and Short Episodes 2022 Nick Zhang
Abhishek Gupta
Zefeng Chen
Yew-Soon Ong
+ PDF Chat Delving into Inter-Image Invariance for Unsupervised Visual Representations 2022 Jiahao Xie
Xiaohang Zhan
Ziwei Liu
Yew-Soon Ong
Chen Change Loy
+ PDF Chat Equivalence between two charged black holes in dynamics of orbits outside the event horizons 2022 Yew-Soon Ong
Naying Zhou
Wenfang Liu
Xin Wu
+ PDF Chat Learning in Sinusoidal Spaces with Physics-Informed Neural Networks 2022 Jian Cheng Wong
Chin Chun Ooi
Abhishek Gupta
Yew-Soon Ong
+ PDF Chat How Does Frequency Bias Affect the Robustness of Neural Image Classifiers against Common Corruption and Adversarial Perturbations? 2022 Alvin Chan
Yew-Soon Ong
Clement Tan
+ PDF Chat Word2Pix: Word to Pixel Cross-Attention Transformer in Visual Grounding 2022 Heng Zhao
Joey Tianyi Zhou
Yew-Soon Ong
+ PDF Chat Co-Learning Bayesian Optimization 2022 Zhendong Guo
Yew-Soon Ong
Tiantian He
Haitao Liu
+ PDF Chat Chaos in a Magnetized Modified Gravity Schwarzschild Spacetime 2022 Daqi Yang
Wenfu Cao
Naying Zhou
Yew-Soon Ong
Wenfang Liu
Xin Wu
+ PDF Chat Generative Multiform Bayesian Optimization 2022 Zhendong Guo
Haitao Liu
Yew-Soon Ong
Xinghua Qu
Yuzhe Zhang
Jianmin Zheng
+ PDF Chat CAN-PINN: A fast physics-informed neural network based on coupled-automatic–numerical differentiation method 2022 Pao‐Hsiung Chiu
Jian Cheng Wong
Chin Chun Ooi
My Ha Dao
Yew-Soon Ong
+ PDF Chat Scalable Transfer Evolutionary Optimization: Coping With Big Task Instances 2022 Mojtaba Shakeri
Erfan Miahi
Abhishek Gupta
Yew-Soon Ong
+ PDF Chat Half a Dozen Real-World Applications of Evolutionary Multitasking, and More 2022 Abhishek Gupta
Lei Zhou
Yew-Soon Ong
Zefeng Chen
Yaqing Hou
+ PDF Chat A Note on the Construction of Explicit Symplectic Integrators for Schwarzschild Spacetimes 2022 Naying Zhou
Yew-Soon Ong
Wenfang Liu
Xin Wu
+ PDF Chat Multiparty Dual Learning 2022 Yuan Gao
Maoguo Gong
Yu Xie
A. K. Qin
Ke Pan
Yew-Soon Ong
+ Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains 2022 Haitao Liu
Kai Wu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
+ A Survey on AI Sustainability: Emerging Trends on Learning Algorithms and Research Challenges 2022 Zhenghua Chen
Min Wu
Alvin Chan
Xiaoli Li
Yew-Soon Ong
+ Jacobian Granger Causal Neural Networks for Analysis of Stationary and Nonstationary Data 2022 Suryadi Soekardjo
Yew-Soon Ong
Lock Yue Chew
+ Geo-Neus: Geometry-Consistent Neural Implicit Surfaces Learning for Multi-view Reconstruction 2022 Qiancheng Fu
Qingshan Xu
Yew-Soon Ong
Wenbing Tao
+ Masked Frequency Modeling for Self-Supervised Visual Pre-Training 2022 Jia‐Hao Xie
Wei Li
Xiaohang Zhan
Ziwei Liu
Yew-Soon Ong
Chen Change Loy
+ Jack and Masters of All Trades: One-Pass Learning of a Set of Model Sets from Foundation AI Models 2022 Han Xiang Choong
Yew-Soon Ong
Abhishek Gupta
Ray Lim
+ Understanding Diversity in Session-Based Recommendation 2022 Yin Qing
Hui Fang
Zhu Sun
Yew-Soon Ong
+ A Multi-Channel Next POI Recommendation Framework with Multi-Granularity Check-in Signals 2022 Zhu Sun
Lei Yu
Lu Zhang
Chen Li
Yew-Soon Ong
Jie Zhang
+ Not All Neighbors Are Worth Attending to: Graph Selective Attention Networks for Semi-supervised Learning 2022 Tiantian He
Haicang Zhou
Yew-Soon Ong
Gao Cong
+ How Does Frequency Bias Affect the Robustness of Neural Image Classifiers against Common Corruption and Adversarial Perturbations? 2022 Alvin Chan
Yew-Soon Ong
Clement Tan
+ Multitask Neuroevolution for Reinforcement Learning with Long and Short Episodes 2022 Nick Zhang
Abhishek Gupta
Zefeng Chen
Yew-Soon Ong
+ A Generic Reinforced Explainable Framework with Knowledge Graph for Session-based Recommendation 2022 Huizi Wu
Hui Fang
Zhu Sun
Cong Geng
Xinyu Kong
Yew-Soon Ong
+ Neuroevolution of Physics-Informed Neural Nets: Benchmark Problems and Comparative Results 2022 Nicholas Sung Wei Yong
Jian Cheng Wong
Pao‐Hsiung Chiu
Abhishek Gupta
Chin Chun Ooi
Yew-Soon Ong
+ DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation 2022 Zhu Sun
Hui Fang
Jie Yang
Xinghua Qu
Hongyang Liu
Di Yu
Yew-Soon Ong
Jie Zhang
+ PDF Chat Adversary Agnostic Robust Deep Reinforcement Learning 2021 Xinghua Qu
Abhishek Gupta
Yew-Soon Ong
Zhu Sun
+ PDF Chat Charged Particle Motions near Non-Schwarzschild Black Holes with External Magnetic Fields in Modified Theories of Gravity 2021 Yew-Soon Ong
Naying Zhou
Wenfang Liu
Xin Wu
+ PDF Chat Learning in Sinusoidal Spaces with Physics-Informed Neural Networks 2021 Jian Cheng Wong
Chin Chun Ooi
Abhishek Gupta
Yew-Soon Ong
+ PDF Chat Modulating scalable Gaussian processes for expressive statistical learning 2021 Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
+ PDF Chat Unsupervised Object-Level Representation Learning from Scene Images 2021 Jiahao Xie
Xiaohang Zhan
Ziwei Liu
Yew-Soon Ong
Chen Change Loy
+ Graph Joint Attention Networks 2021 Tiantian He
Lu Bai
Yew-Soon Ong
+ PDF Chat Multi-Party Dual Learning 2021 Maoguo Gong
Yuan Gao
Yu Xie
A. K. Qin
Ke Pan
Yew-Soon Ong
+ PDF Chat Can Transfer Neuroevolution Tractably Solve Your Differential Equations? 2021 Jian Cheng Wong
Abhishek Gupta
Yew-Soon Ong
+ RNA alternative splicing prediction with discrete compositional energy network 2021 Alvin Chan
Anna Korsakova
Yew-Soon Ong
Fernaldo Richtia Winnerdy
Kah Wai Lim
Anh Tuân Phan
+ PDF Chat Deep Latent-Variable Kernel Learning 2021 Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
+ PDF Chat Vicinal Vertex Allocation for Matrix Factorization in Networks 2021 Tiantian He
Lu Bai
Yew-Soon Ong
+ Learning Conjoint Attentions for Graph Neural Nets 2021 Tiantian He
Yew-Soon Ong
Lu Bai
+ Multi-Space Evolutionary Search for Large-Scale Optimization 2021 Liang Feng
Qingxia Shang
Yaqing Hou
Kay Chen Tan
Yew-Soon Ong
+ RNA Alternative Splicing Prediction with Discrete Compositional Energy Network 2021 Alvin Chan
Anna Korsakova
Yew-Soon Ong
Fernaldo Richtia Winnerdy
Kah Wai Lim
Anh Tuân Phan
+ Multi-Party Dual Learning 2021 Maoguo Gong
Yuan Gao
Yu Xie
A. K. Qin
Ke Pan
Yew-Soon Ong
+ Learning in Sinusoidal Spaces with Physics-Informed Neural Networks 2021 Jian Cheng Wong
Chinchun Ooi
Abhishek Gupta
Yew-Soon Ong
+ Unsupervised Object-Level Representation Learning from Scene Images 2021 Jiahao Xie
Xiaohang Zhan
Ziwei Liu
Yew-Soon Ong
Chen Change Loy
+ Learning Conjoint Attentions for Graph Neural Nets 2021 Tiantian He
Yew-Soon Ong
Lu Bai
+ Half a Dozen Real-World Applications of Evolutionary Multitasking, and More 2021 Abhishek Gupta
Lei Zhou
Yew-Soon Ong
Zefeng Chen
Yaqing Hou
+ Word2Pix: Word to Pixel Cross Attention Transformer in Visual Grounding 2021 Heng Zhao
Joey Tianyi Zhou
Yew-Soon Ong
+ Defending Adversarial Attacks without Adversarial Attacks in Deep Reinforcement Learning. 2020 Xinghua Qu
Yew-Soon Ong
Abhishek Gupta
Zhu Sun
+ PDF Chat Online Deep Clustering for Unsupervised Representation Learning 2020 Xiaohang Zhan
Jiahao Xie
Ziwei Liu
Yew-Soon Ong
Chen Change Loy
+ PDF Chat What It Thinks Is Important Is Important: Robustness Transfers Through Input Gradients 2020 Alvin Chan
Yi Tay
Yew-Soon Ong
+ PDF Chat Large-Scale Heteroscedastic Regression via Gaussian Process 2020 Haitao Liu
Yew-Soon Ong
Jianfei Cai
+ Relational Thematic Clustering with Mutually Preferred Neighbors. 2020 Tiantian He
Lu Bai
Yew-Soon Ong
+ PDF Chat When Gaussian Process Meets Big Data: A Review of Scalable GPs 2020 Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
+ Heterogeneous Representation Learning: A Review 2020 Joey Tianyi Zhou
Xi Peng
Yew-Soon Ong
+ Deep Latent-Variable Kernel Learning 2020 Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
+ Online Deep Clustering for Unsupervised Representation Learning 2020 Xiaohang Zhan
Jiahao Xie
Ziwei Liu
Yew-Soon Ong
Chen Change Loy
+ Modulating Scalable Gaussian Processes for Expressive Statistical Learning 2020 Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
+ Poison Attacks against Text Datasets with Conditional Adversarially Regularized Autoencoder 2020 Alvin Chan
Yi Tay
Yew-Soon Ong
Aston Zhang
+ Poison Attacks against Text Datasets with Conditional Adversarially Regularized Autoencoder 2020 Alvin Chan
Yi Tay
Yew-Soon Ong
Aston Zhang
+ Adversary Agnostic Robust Deep Reinforcement Learning 2020 Xinghua Qu
Yew-Soon Ong
Abhishek Gupta
Zhu Sun
+ CoCon: A Self-Supervised Approach for Controlled Text Generation 2020 Alvin Chan
Yew-Soon Ong
Bill Tuck Weng Pung
Aston Zhang
Jie Fu
+ An Improved Transfer Model: Randomized Transferable Machine 2020 Pengfei Wei
Xinghua Qu
Yew-Soon Ong
Zejun Ma
+ Delving into Inter-Image Invariance for Unsupervised Visual Representations 2020 Jiahao Xie
Xiaohang Zhan
Ziwei Liu
Yew-Soon Ong
Chen Change Loy
+ Jacobian Adversarially Regularized Networks for Robustness 2019 Alvin Chan
Yi Tay
Yew-Soon Ong
Jie Fu
+ PDF Chat Automatic Construction of Multi-layer Perceptron Network from Streaming Examples 2019 Mahardhika Pratama
Choiru Za’in
Andri Ashfahani
Yew-Soon Ong
Weiping Ding
+ PDF Chat DEVDAN: Deep evolving denoising autoencoder 2019 Andri Ashfahani
Mahardhika Pratama
Edwin Lughofer
Yew-Soon Ong
+ DEVDAN: Deep Evolving Denoising Autoencoder 2019 Andri Ashfahani
Mahardhika Pratama
Edwin Lughofer
Yew-Soon Ong
+ A Survey on Multi-output Learning 2019 Donna Xu
Yaxin Shi
Ivor W. Tsang
Yew-Soon Ong
Chen Gong
Xiaobo Shen
+ Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods 2019 Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
+ Automatic Construction of Multi-layer Perceptron Network from Streaming Examples 2019 Mahardhika Pratama
Choiru Za’in
Andri Ashfahani
Yew-Soon Ong
Weiping Ding
+ PDF Chat Survey on Multi-Output Learning 2019 Donna Xu
Yaxin Shi
Ivor W. Tsang
Yew-Soon Ong
Chen Gong
Xiaobo Shen
+ Minimalistic Attacks: How Little it Takes to Fool a Deep Reinforcement Learning Policy 2019 Xinghua Qu
Zhu Sun
Yew-Soon Ong
Abhishek Gupta
Pengfei Wei
+ A Multi-Task Gradient Descent Method for Multi-Label Learning 2019 Lu Bai
Yew-Soon Ong
Tiantian He
Abhishek Gupta
+ Poison as a Cure: Detecting & Neutralizing Variable-Sized Backdoor Attacks in Deep Neural Networks 2019 Alvin Chan
Yew-Soon Ong
+ What it Thinks is Important is Important: Robustness Transfers through Input Gradients 2019 Alvin Chan
Yi Tay
Yew-Soon Ong
+ Jacobian Adversarially Regularized Networks for Robustness 2019 Alvin Chan
Yi Tay
Yew-Soon Ong
Jie Fu
+ DEVDAN: Deep Evolving Denoising Autoencoder 2019 Andri Ashfahani
Mahardhika Pratama
Edwin Lughofer
Yew-Soon Ong
+ A Survey on Multi-output Learning 2019 Donna Xu
Yaxin Shi
Ivor W. Tsang
Yew-Soon Ong
Gong Chen
Xiaobo Shen
+ Towards Safer Smart Contracts: A Sequence Learning Approach to Detecting Vulnerabilities. 2018 Wesley Joon-Wie Tann
Xing Han
Sourav Sen Gupta
Yew-Soon Ong
+ PDF Chat Understanding and comparing scalable Gaussian process regression for big data 2018 Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
+ PDF Chat Co-evolutionary multi-task learning for dynamic time series prediction 2018 Rohitash Chandra
Yew-Soon Ong
Chi-Keong Goh
+ Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression 2018 Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
+ PDF Chat Addressing expensive multi-objective games with postponed preference articulation via memetic co-evolution 2018 Adam Żychowski
Abhishek Gupta
Jacek Mańdziuk
Yew-Soon Ong
+ When Gaussian Process Meets Big Data: A Review of Scalable GPs 2018 Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
+ Autonomous Deep Learning: Incremental Learning of Denoising Autoencoder for Evolving Data Streams 2018 Mahardhika Pratama
Andri Ashfahani
Yew-Soon Ong
Savitha Ramasamy
Edwin Lughofer
+ Metamorphic Relation Based Adversarial Attacks on Differentiable Neural Computer 2018 Alvin Chan
Lei Ma
Felix Juefei-Xu
Xiaofei Xie
Yang Liu
Yew-Soon Ong
+ Large-scale Heteroscedastic Regression via Gaussian Process 2018 Haitao Liu
Yew-Soon Ong
Jianfei Cai
+ Understanding and Comparing Scalable Gaussian Process Regression for Big Data 2018 Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
+ AIR5: Five Pillars of Artificial Intelligence Research 2018 Yew-Soon Ong
Abhishek Gupta
+ Towards Safer Smart Contracts: A Sequence Learning Approach to Detecting Security Threats 2018 Wesley Joon-Wie Tann
Xing Han
Sourav Sen Gupta
Yew-Soon Ong
+ Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression 2018 Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
+ PDF Chat MIML-FCN+: Multi-Instance Multi-Label Learning via Fully Convolutional Networks with Privileged Information 2017 Hao Yang
Joey Tianyi Zhou
Jianfei Cai
Yew-Soon Ong
+ Co-evolutionary multi-task learning for dynamic time series prediction 2017 Rohitash Chandra
Yew-Soon Ong
Chi-Keong Goh
+ Evolutionary Multitasking for Multiobjective Continuous Optimization: Benchmark Problems, Performance Metrics and Baseline Results 2017 Yuan Yuan
Yew-Soon Ong
Liang Feng
A. K. Qin
Abhishek Gupta
Bingshui Da
Qingfu Zhang
Kay Chen Tan
Yaochu Jin
Hisao Ishibuchi
+ MIML-FCN+: Multi-instance Multi-label Learning via Fully Convolutional Networks with Privileged Information 2017 Hao Yang
Joey Tianyi Zhou
Jianfei Cai
Yew-Soon Ong
+ Evolutionary Multitasking for Single-objective Continuous Optimization: Benchmark Problems, Performance Metric, and Baseline Results 2017 Bingshui Da
Yew-Soon Ong
Feng Liang
A. K. Qin
Abhishek Gupta
Zexuan Zhu
Chuan-Kang Ting
Ke Tang
Xin Yao
+ Co-evolutionary multi-task learning for dynamic time series prediction 2017 Rohitash Chandra
Yew-Soon Ong
Chi-Keong Goh
+ PDF Chat Genetic transfer or population diversification? Deciphering the secret ingredients of evolutionary multitask optimization 2016 Abhishek Gupta
Yew-Soon Ong
+ Adaptive Subgradient Methods for Online AUC Maximization 2016 Yi Ding
Peilin Zhao
Steven C. H. Hoi
Yew-Soon Ong
+ Genetic Transfer or Population Diversification? Deciphering the Secret Ingredients of Evolutionary Multitask Optimization 2016 Abhishek Gupta
Yew-Soon Ong
+ Erratum to "QuickVina: Accelerating AutoDock Vina Using Gradient-Based Heuristics for Global Optimization" 2012 Stephanus Daniel Handoko
Xuchang Ouyang
Chinh Tran-To Su
Chee Keong Kwoh
Yew-Soon Ong
+ Discovering Support and Affiliated Features from Very High Dimensions 2012 Yiteng Zhai
Mingkui Tan
Ivor W. Tsang
Yew-Soon Ong
+ PDF Chat Transductive Ordinal Regression 2012 Chun-Wei Seah
Ivor W. Tsang
Yew-Soon Ong
+ Meme as Building Block for Evolutionary Optimization of Problem Instances 2012 Liang Feng
Yew-Soon Ong
Ah‐Hwee Tan
Ivor W. Tsang
+ Discovering Support and Affiliated Features from Very High Dimensions 2012 Yiteng Zhai
Mingkui Tan
Yew-Soon Ong
Ivor W. Tsang
+ PDF Chat Ockham’s Razor in memetic computing: Three stage optimal memetic exploration 2011 Giovanni Iacca
Ferrante Neri
Ernesto Mininno
Yew-Soon Ong
Meng‐Hiot Lim
+ A study on constrained MA using GA and SQP: Analytical vs. finite-difference gradients 2008 Stephanus Daniel Handoko
Chee Keong Kwoh
Yew-Soon Ong
M.H. Lim
+ Moments and characteristic polynomials for square lattice graphs 1993 Yew-Soon Ong
K. Balasubramanian
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
10
+ Gaussian processes for Big data 2013 James Hensman
Nicolò Fusi
Neil D. Lawrence
8
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
8
+ PDF Chat GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts 2016 Ibrahim Almosallam
M. J. Jarvis
Stephen Roberts
7
+ Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression 2018 Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
7
+ PDF Chat Can Transfer Neuroevolution Tractably Solve Your Differential Equations? 2021 Jian Cheng Wong
Abhishek Gupta
Yew-Soon Ong
7
+ PDF Chat When Gaussian Process Meets Big Data: A Review of Scalable GPs 2020 Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
7
+ PDF Chat A unified deep artificial neural network approach to partial differential equations in complex geometries 2018 Jens Berg
Kaj Nyström
6
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
6
+ PDF Chat Session-Based Recommendation with Graph Neural Networks 2019 Shu Wu
Yuyuan Tang
Yanqiao Zhu
Liang Wang
Xing Xie
Tieniu Tan
6
+ PDF Chat Neural Attentive Session-based Recommendation 2017 Jing Li
Pengjie Ren
Zhumin Chen
Zhaochun Ren
Tao Lian
Jun Ma
5
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
5
+ On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models 2018 Sven Gowal
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
Chongli Qin
Jonathan Uesato
Relja Arandjelović
Timothy Mann
Pushmeet Kohli
5
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
5
+ NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations 2020 Xiaowei Jin
Shengze Cai
Hui Li
George Em Karniadakis
5
+ Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast, Differentiable Fluid Models that Generalize 2020 Nils Wandel
Michael Weinmann
Reinhard Klein
5
+ PDF Chat Improving DNN Robustness to Adversarial Attacks Using Jacobian Regularization 2018 Daniel Jakubovitz
Raja Giryes
5
+ PDF Chat Evolving Ensemble Fuzzy Classifier 2018 Mahardhika Pratama
Witold Pedrycz
Edwin Lughofer
5
+ On the Connection Between Adversarial Robustness and Saliency Map Interpretability 2019 Christian Etmann
Sebastian Lunz
Peter Maaß
Carola‐Bibiane Schönlieb
5
+ PDF Chat DeepXDE: A Deep Learning Library for Solving Differential Equations 2021 Lu Lu
Xuhui Meng
Zhiping Mao
George Em Karniadakis
5
+ PDF Chat D3M: A Deep Domain Decomposition Method for Partial Differential Equations 2019 Ke Li
Kejun Tang
Tianfan Wu
Qifeng Liao
5
+ Gaussian Process Regression with Heteroscedastic or Non-Gaussian Residuals 2012 Chunyi Wang
Radford M. Neal
5
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
5
+ PDF Chat Self-Attentive Sequential Recommendation 2018 Wang-Cheng Kang
Julian McAuley
5
+ PDF Chat Towards Evaluating the Robustness of Neural Networks 2017 Nicholas Carlini
David Wagner
5
+ PDF Chat StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks 2017 Han Zhang
Tao Xu
Hongsheng Li
Shaoting Zhang
Xiaogang Wang
Xiaolei Huang
Dimitris Metaxas
4
+ Adversarial training for free 2019 Ali Shafahi
Mahyar Najibi
Mohammad Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
Larry S. Davis
Gavin Taylor
Tom Goldstein
4
+ PDF Chat StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation 2018 Yunjey Choi
Minje Choi
Munyoung Kim
Jung-Woo Ha
Sunghun Kim
Jaegul Choo
4
+ PDF Chat Fast Direct Methods for Gaussian Processes 2015 Sivaram Ambikasaran
Daniel Foreman-Mackey
Leslie Greengard
David W. Hogg
Michael O’Neil
4
+ Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation 2017 Matthias Hein
Maksym Andriushchenko
4
+ Lifelong Learning with Dynamically Expandable Networks 2017 Jaehong Yoon
Eunho Yang
Jeongtae Lee
Sung Ju Hwang
4
+ Variable noise and dimensionality reduction for sparse Gaussian processes 2006 Edward Snelson
Zoubin Ghahramani
4
+ Certified Defenses for Data Poisoning Attacks 2017 Jacob Steinhardt
Pang Wei Koh
Percy Liang
4
+ PDF Chat Unsupervised Pre-Training of Image Features on Non-Curated Data 2019 Mathilde Caron
Piotr Bojanowski
Julien Mairal
Armand Joulin
4
+ Divisive Gaussian Processes for Nonstationary Regression 2014 Luis Muñoz-González
Miguel Lázaro-Gredilla
Anı́bal R. Figueiras-Vidal
4
+ Laplace Approximation for Divisive Gaussian Processes for Nonstationary Regression 2015 Luis Muñoz-González
Miguel Lázaro-Gredilla
Anı́bal R. Figueiras-Vidal
4
+ PDF Chat Understanding and comparing scalable Gaussian process regression for big data 2018 Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
4
+ Stochastic variational inference 2013 Matthew D. Hoffman
David M. Blei
Chong Wang
John Paisley
4
+ PDF Chat Feature Denoising for Improving Adversarial Robustness 2019 Cihang Xie
Yuxin Wu
Laurens van der Maaten
Alan Yuille
Kaiming He
4
+ Construction of higher order symplectic integrators 1990 Haruo Yoshida
4
+ PDF Chat Improving Multi-label Learning with Missing Labels by Structured Semantic Correlations 2016 Hao Yang
Joey Tianyi Zhou
Jianfei Cai
4
+ Data-Efficient Image Recognition with Contrastive Predictive Coding 2019 Olivier J. Hénaff
Aravind Srinivas
Jeffrey De Fauw
Ali Razavi
Carl Doersch
S. M. Ali Eslami
Aäron van den Oord
4
+ PDF Chat Efficient Optimization for Sparse Gaussian Process Regression 2015 Yanshuai Cao
Marcus A. Brubaker
David J. Fleet
Aaron Hertzmann
4
+ PDF Chat Learning Representations for Automatic Colorization 2016 Gustav Larsson
Michael Maire
Gregory Shakhnarovich
4
+ PDF Chat Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations 2018 Gianluigi Pillonetto
Luca Schenato
Damiano Varagnolo
4
+ PDF Chat Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles 2016 Mehdi Noroozi
Paolo Favaro
4
+ Searching for exotic particles in high-energy physics with deep learning 2014 Pierre Baldi
Peter Sadowski
D. Whiteson
4
+ DGM: A deep learning algorithm for solving partial differential equations 2018 Justin Sirignano
Konstantinos Spiliopoulos
4
+ PDF Chat No free lunch theorems for optimization 1997 David H. Wolpert
William G. Macready
4
+ Robustness May Be at Odds with Accuracy 2018 Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Mądry
4