+
|
To Tweak or Not to Tweak. How Exploiting Flexibilities in Gene Set Analysis Leads to Overoptimism
|
2024
|
Milena Wünsch
Christina Sauer
Moritz Herrmann
Ludwig Christian Hinske
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Beyond algorithm hyperparameters: on preprocessing hyperparameters and
associated pitfalls in machine learning applications
|
2024
|
Christina Sauer
Anne‐Laure Boulesteix
Luzia Hanßum
Farina Hodiamont
Claudia Bausewein
Theresa Ullmann
|
+
|
Understanding overfitting in random forest for probability estimation: a visualization and simulation study
|
2024
|
Lasai Barreñada
Paula Dhiman
D. Timmerman
Anne‐Laure Boulesteix
Ben Van Calster
|
+
PDF
Chat
|
Constructing Confidence Intervals for 'the' Generalization Error -- a
Comprehensive Benchmark Study
|
2024
|
Hannah Schulz-Kümpel
Sebastian Fischer
Thomas Nagler
Anne‐Laure Boulesteix
Bernd Bischl
Roman Hornung
|
+
PDF
Chat
|
On the handling of method failure in comparison studies
|
2024
|
Milena Wünsch
Moritz Herrmann
Elisa Noltenius
Matthias Mohr
Tim P. Morris
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Addressing researcher degrees of freedom through minP adjustment
|
2024
|
Maximilian M. Mandl
Andrea Becker-Pennrich
Ludwig Christian Hinske
Sabine Hoffmann
Anne‐Laure Boulesteix
|
+
|
Data-Driven Simulations to Assess the Impact of Study Imperfections in Time-to-Event Analyses
|
2024
|
Michał Abrahamowicz
Marie‐Eve Beauchamp
Anne‐Laure Boulesteix
Tim P. Morris
Willi Sauerbrei
Jay S. Kaufman
on behalf of the STRATOS Simulation Panel
|
+
PDF
Chat
|
Position Paper: Rethinking Empirical Research in Machine Learning:
Addressing Epistemic and Methodological Challenges of Experimentation
|
2024
|
Moritz Herrmann
F. Julian D. Lange
Katharina Eggensperger
Giuseppe Casalicchio
Marcel Wever
Matthias Feurer
David Rügamer
Eyke Hüllermeier
Anne‐Laure Boulesteix
Bernd Bischl
|
+
PDF
Chat
|
To tweak or not to tweak. How exploiting flexibilities in gene set
analysis leads to over-optimism
|
2024
|
Milena Wünsch
Christina Sauer
Moritz Herrmann
Ludwig Christian Hinske
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
A comparison of hyperparameter tuning procedures for clinical prediction models: A simulation study
|
2024
|
Zoë S Dunias
Ben Van Calster
D. Timmerman
Anne‐Laure Boulesteix
Maarten van Smeden
|
+
|
Addressing researcher degrees of freedom through minP adjustment
|
2024
|
Maximilian M Mandl
Andrea Becker-Pennrich
Ludwig Christian Hinske
Sabine Hoffmann
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
A white paper on good research practices in benchmarking: The case of cluster analysis
|
2023
|
Iven Van Mechelen
Anne‐Laure Boulesteix
Rainer Dangl
Nema Dean
Christian Hennig
Friedrich Leisch
Douglas Steinley
Matthijs J. Warrens
|
+
PDF
Chat
|
Prediction approaches for partly missing multi‐omics covariate data: A literature review and an empirical comparison study
|
2023
|
Roman Hornung
Frederik Ludwigs
Jonas Hagenberg
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Explaining the optimistic performance evaluation of newly proposed methods: A cross‐design validation experiment
|
2023
|
Christina Nießl
Sabine Hoffmann
Theresa Ullmann
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Phases of methodological research in biostatistics—Building the evidence base for new methods
|
2023
|
Georg Heinze
Anne‐Laure Boulesteix
Michael Kammer
Tim P. Morris
Ian R. White
|
+
PDF
Chat
|
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
|
2023
|
Bernd Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
Stefan Coors
Janek Thomas
Theresa Ullmann
Marc Becker
Anne‐Laure Boulesteix
|
+
|
Improving Software Engineering in Biostatistics: Challenges and Opportunities
|
2023
|
Daniel Sabanés Bové
Heidi Seibold
Anne‐Laure Boulesteix
Juliane Manitz
Alessandro Gasparini
Burak K. Guünhan
Oliver Boix
Armin Schuüler
Sven Fillinger
Sven Nahnsen
|
+
|
Prediction approaches for partly missing multi-omics covariate data: A literature review and an empirical comparison study
|
2023
|
Roman Hornung
Frederik Ludwigs
Jonas Hagenberg
Anne‐Laure Boulesteix
|
+
|
From RNA sequencing measurements to the final results: a practical guide to navigating the choices and uncertainties of gene set analysis
|
2023
|
Milena Wünsch
Christina Sauer
Patrick Callahan
Ludwig Christian Hinske
Anne‐Laure Boulesteix
|
+
|
Evaluating machine learning models in non-standard settings: An overview and new findings
|
2023
|
Roman Hornung
Malte Nalenz
Lennart Schneider
Andreas Bender
Ludwig Bothmann
Bernd Bischl
Thomas Augustin
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Planning preclinical confirmatory multicenter trials to strengthen translation from basic to clinical research – a multi-stakeholder workshop report
|
2022
|
Natascha Drude
Lorena Martinez‐Gamboa
Meggie Danziger
Anja Collazo
Silke Kniffert
Janine Wiebach
Gustav Nilsonne
Frank Konietschke
Sophie K. Piper
Samuel Pawel
|
+
PDF
Chat
|
Planning preclinical confirmatory multicenter trials to strengthen translation from basic to clinical research – a multi-stakeholder workshop report
|
2022
|
Natascha Drude
Lorena Martinez‐Gamboa
Meggie Danziger
Anja Collazo
Silke Kniffert
Janine Wiebach
Gustav Nilsonne
Frank Konietschke
Sophie K. Piper
Samuel Pawel
|
+
|
To adjust or not to adjust: It is not the tests you perform that count, but how you report them
|
2022
|
Anne‐Laure Boulesteix
Sabine Hoffmann
|
+
|
Explaining the optimistic performance evaluation of newly proposed methods: a cross-design validation experiment
|
2022
|
Christina Nießl
Sabine Hoffmann
Theresa Ullmann
Anne‐Laure Boulesteix
|
+
|
Phases of methodological research in biostatistics - building the evidence base for new methods
|
2022
|
Georg Heinze
Anne‐Laure Boulesteix
Michael N. Kammer
Tim P. Morris
Ian R. White
|
+
PDF
Chat
|
Validation of cluster analysis results on validation data: A systematic framework
|
2021
|
Theresa Ullmann
Christian Hennig
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Over‐optimism in benchmark studies and the multiplicity of design and analysis options when interpreting their results
|
2021
|
Christina Nießl
Moritz Herrmann
Chiara Wiedemann
Giuseppe Casalicchio
Anne‐Laure Boulesteix
|
+
|
PH-0165 Differentiation of Pseudoprogression vs. True Progressive Disease using Contrast Clearance Analysis
|
2021
|
Raphael Bodensohn
Robert Forbrig
Stefanie Lietke
J Reis
Anne‐Laure Boulesteix
Ulrich Mansmann
Indrawati Hadi
Daniel F. Fleischmann
K.H.J. von Henning-Yoo
J. Mücke
|
+
|
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
|
2021
|
Bernd Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
Stefan Coors
Janek Thomas
Theresa Ullmann
Marc Becker
Anne‐Laure Boulesteix
|
+
|
Validation of cluster analysis results on validation data: A systematic framework
|
2021
|
Theresa Ullmann
Christian Hennig
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Introduction to statistical simulations in health research
|
2020
|
Anne‐Laure Boulesteix
Rolf H. H. Groenwold
Michał Abrahamowicz
Harald Binder
Matthias Briel
Roman Hornung
Tim P. Morris
Jörg Rahnenführer
Willi Sauerbrei
|
+
PDF
Chat
|
Examining the robustness of observational associations to model, measurement and sampling uncertainty with the vibration of effects framework
|
2020
|
Simon Klau
Sabine Hoffmann
Chirag J. Patel
John P. A. Ioannidis
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Large-scale benchmark study of survival prediction methods using multi-omics data
|
2020
|
Moritz Herrmann
Philipp Probst
Roman Hornung
Vindi Jurinović
Anne‐Laure Boulesteix
|
+
|
On the asymptotic behaviour of the variance estimator of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e208" altimg="si7.svg"><mml:mi>U</mml:mi></mml:math>-statistic
|
2020
|
Mathias Fuchs
Roman Hornung
Anne‐Laure Boulesteix
Riccardo De Bin
|
+
|
Modelling Individual Response to Treatment and Its Uncertainty:A Review of Statistical Methods and Challenges for Future Research
|
2020
|
Ulrich Mansmann
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Combining clinical and molecular data in regression prediction models: insights from a simulation study
|
2019
|
Riccardo De Bin
Anne‐Laure Boulesteix
Axel Benner
Natália Becker
Willi Sauerbrei
|
+
PDF
Chat
|
Essential guidelines for computational method benchmarking
|
2019
|
Lukas M. Weber
Wouter Saelens
Robrecht Cannoodt
Charlotte Soneson
Alexander Hapfelmeier
Paul P. Gardner
Anne‐Laure Boulesteix
Yvan Saeys
Mark D. Robinson
|
+
|
Sampling uncertainty versus method uncertainty: A general framework with applications to omics biomarker selection
|
2019
|
Simon Klau
Marie‐Laure Martin‐Magniette
Anne‐Laure Boulesteix
Sabine Hoffmann
|
+
PDF
Chat
|
Hyperparameters and tuning strategies for random forest
|
2019
|
Philipp Probst
Marvin Wright
Anne‐Laure Boulesteix
|
+
|
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
|
2019
|
Philipp Probst
Anne‐Laure Boulesteix
Bernd Bischl
|
+
|
Essential guidelines for computational method benchmarking
|
2018
|
Lukas M. Weber
Wouter Saelens
Robrecht Cannoodt
Charlotte Soneson
Alexander Hapfelmeier
Paul P. Gardner
Anne‐Laure Boulesteix
Yvan Saeys
Mark D. Robinson
|
+
|
Benchmarking in cluster analysis: A white paper
|
2018
|
Iven Van Mechelen
Anne‐Laure Boulesteix
Rainer Dangl
Nema Dean
Isabelle Guyon
Christian Hennig
Friedrich Leisch
Douglas Steinley
|
+
|
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
|
2018
|
Philipp Probst
Bernd Bischl
Anne‐Laure Boulesteix
|
+
|
Essential guidelines for computational method benchmarking
|
2018
|
Lukas M. Weber
Wouter Saelens
Robrecht Cannoodt
Charlotte Soneson
Alexander Hapfelmeier
Paul P. Gardner
Anne‐Laure Boulesteix
Yvan Saeys
Mark D. Robinson
|
+
PDF
Chat
|
On the necessity and design of studies comparing statistical methods
|
2017
|
Anne‐Laure Boulesteix
Harald Binder
Michał Abrahamowicz
Willi Sauerbrei
|
+
PDF
Chat
|
Towards evidence-based computational statistics: lessons from clinical research on the role and design of real-data benchmark studies
|
2017
|
Anne‐Laure Boulesteix
Rory Wilson
Alexander Hapfelmeier
|
+
PDF
Chat
|
Detection of influential points as a byproduct of resampling-based variable selection procedures
|
2017
|
Riccardo De Bin
Anne‐Laure Boulesteix
Willi Sauerbrei
|
+
|
To tune or not to tune the number of trees in random forest
|
2017
|
Philipp Probst
Anne‐Laure Boulesteix
|
+
|
To tune or not to tune the number of trees in random forest?
|
2017
|
Philipp Probst
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Erratum to: Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
|
2016
|
Simone Wahl
Anne‐Laure Boulesteix
Astrid Zierer
Barbara Thorand
Mark A. van de Wiel
|
+
PDF
Chat
|
A computationally fast variable importance test for random forests for high-dimensional data
|
2016
|
Silke Janitza
Ender Celik
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
|
2016
|
Simone Wahl
Anne‐Laure Boulesteix
Astrid Zierer
Barbara Thorand
Mark A. van de Wiel
|
+
PDF
Chat
|
A computationally fast variable importance test for random forests for high-dimensional data
|
2016
|
Silke Janitza
Ender Celik
Anne‐Laure Boulesteix
|
+
|
Categorical variables with many categories are preferentially selected in bootstrap‐based model selection procedures for multivariable regression models
|
2016
|
Susanne Rospleszcz
Silke Janitza
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment
|
2016
|
Roman Hornung
Anne‐Laure Boulesteix
David Causeur
|
+
|
Which Resampling-Based Error Estimator for Benchmark Studies? A Power Analysis with Application to PLS-LDA
|
2016
|
Anne‐Laure Boulesteix
|
+
|
Random forest for ordinal responses: Prediction and variable selection
|
2015
|
Silke Janitza
Gerhard Tutz
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications
|
2015
|
Silke Janitza
Harald Binder
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Subsampling Versus Bootstrapping in Resampling-Based Model Selection for Multivariable Regression
|
2015
|
Riccardo De Bin
Silke Janitza
Willi Sauerbrei
Anne‐Laure Boulesteix
|
+
|
On stability issues in deriving multivariable regression models
|
2014
|
Willi Sauerbrei
Anika Buchholz
Anne‐Laure Boulesteix
Harald Binder
|
+
|
Random Forests for Ordinal Response Data: Prediction and Variable Selection
|
2014
|
Silke Janitza
Gerhard Tutz
Anne‐Laure Boulesteix
|
+
|
Categorical variables with many categories arepreferentially selected in model selection procedures for multivariable regression models on bootstrap samples
|
2014
|
Susanne Rospleszcz
Silke Janitza
Anne‐Laure Boulesteix
|
+
|
Machine learning versus statistical modeling
|
2014
|
Anne‐Laure Boulesteix
Matthias Schmid
|
+
|
A U-statistic estimator for the variance of resampling-based error estimators
|
2013
|
Mathias Fuchs
Roman Hornung
Riccardo De Bin
Anne‐Laure Boulesteix
|
+
|
Correcting the Optimal Resampling‐Based Error Rate by Estimating the Error Rate of Wrapper Algorithms
|
2013
|
Christoph Bernau
Thomas Augustin
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
A Plea for Neutral Comparison Studies in Computational Sciences
|
2013
|
Anne‐Laure Boulesteix
Sabine Lauer
Manuel J. A. Eugster
|
+
PDF
Chat
|
Iterative Reconstruction of High-Dimensional Gaussian Graphical Models Based on a New Method to Estimate Partial Correlations under Constraints
|
2013
|
Vincent Guillemot
Andreas Bender
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
An AUC-based permutation variable importance measure for random forests
|
2013
|
Silke Janitza
Carolin Strobl
Anne‐Laure Boulesteix
|
+
|
Complexity Selection with Cross-validation for Lasso and Sparse Partial Least Squares Using High-Dimensional Data
|
2013
|
Anne‐Laure Boulesteix
Adrian Richter
Christoph Bernau
|
+
|
A U-statistic estimator for the variance of resampling-based error estimators
|
2013
|
Mathias Fuchs
Roman Hornung
Riccardo De Bin
Anne‐Laure Boulesteix
|
+
|
On the Simultaneous Analysis of Clinical and Omics Data: A Comparison of Globalboosttest and Pre-validation Techniques
|
2013
|
Margret‐Ruth Oelker
Anne‐Laure Boulesteix
|
+
|
iPACOSE: an iterative algorithm for the estimation of gene regulation networks
|
2012
|
Vincent Guillemot
Andreas Bender
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Added predictive value of high-throughput molecular data to clinical data and its validation
|
2011
|
Anne‐Laure Boulesteix
Willi Sauerbrei
|
+
PDF
Chat
|
Over-optimism in bioinformatics research
|
2009
|
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Regularized estimation of large-scale gene association networks using graphical Gaussian models
|
2009
|
Nicole Krämer
Juliane Schäfer
Anne‐Laure Boulesteix
|
+
PDF
Chat
|
Conditional variable importance for random forests
|
2008
|
Carolin Strobl
Anne‐Laure Boulesteix
Thomas Kneib
Thomas Augustin
Achim Zeileis
|
+
PDF
Chat
|
Penalized Partial Least Squares with applications to B-spline transformations and functional data
|
2008
|
Nicole Krämer
Anne‐Laure Boulesteix
Gerhard Tutz
|
+
|
Comments on: Augmenting the bootstrap to analyze high dimensional genomic data
|
2008
|
Anne‐Laure Boulesteix
Athanassios Kondylis
Nicole Krämer
|
+
|
Maximally selected Chi-squared statistics and non-monotonic associations: An exact approach based on two cutpoints
|
2007
|
Anne‐Laure Boulesteix
Carolin Strobl
|
+
PDF
Chat
|
Unbiased split selection for classification trees based on the Gini Index
|
2006
|
Carolin Strobl
Anne‐Laure Boulesteix
Thomas Augustin
|
+
PDF
Chat
|
Maximally Selected Chi‐Square Statistics and Binary Splits of Nominal Variables
|
2006
|
Anne‐Laure Boulesteix
|
+
|
Maximally Selected Chi-square Statistics for Ordinal Variables
|
2006
|
Anne‐Laure Boulesteix
|
+
|
Maximally selected chi-square statistics and umbrella orderings
|
2006
|
Anne‐Laure Boulesteix
Carolin Strobl
|
+
|
Penalized Partial Least Squares Based on B-Splines Transformations
|
2006
|
Nicole Krämer
Anne‐Laure Boulesteix
Gerhard Tutz
|
+
|
Stochastic modeling for the COMET-assay
|
2003
|
Anne‐Laure Boulesteix
Volker Hösel
Volkmar Liebscher
|