Anne‐Laure Boulesteix

Follow

Generating author description...

All published works
Action Title Year Authors
+ To Tweak or Not to Tweak. How Exploiting Flexibilities in Gene Set Analysis Leads to Overoptimism 2024 Milena Wünsch
Christina Sauer
Moritz Herrmann
Ludwig Christian Hinske
Anne‐Laure Boulesteix
+ PDF Chat Beyond algorithm hyperparameters: on preprocessing hyperparameters and associated pitfalls in machine learning applications 2024 Christina Sauer
Anne‐Laure Boulesteix
Luzia Hanßum
Farina Hodiamont
Claudia Bausewein
Theresa Ullmann
+ Understanding overfitting in random forest for probability estimation: a visualization and simulation study 2024 Lasai Barreñada
Paula Dhiman
D. Timmerman
Anne‐Laure Boulesteix
Ben Van Calster
+ PDF Chat Constructing Confidence Intervals for 'the' Generalization Error -- a Comprehensive Benchmark Study 2024 Hannah Schulz-Kümpel
Sebastian Fischer
Thomas Nagler
Anne‐Laure Boulesteix
Bernd Bischl
Roman Hornung
+ PDF Chat On the handling of method failure in comparison studies 2024 Milena Wünsch
Moritz Herrmann
Elisa Noltenius
Matthias Mohr
Tim P. Morris
Anne‐Laure Boulesteix
+ PDF Chat Addressing researcher degrees of freedom through minP adjustment 2024 Maximilian M. Mandl
Andrea Becker-Pennrich
Ludwig Christian Hinske
Sabine Hoffmann
Anne‐Laure Boulesteix
+ Data-Driven Simulations to Assess the Impact of Study Imperfections in Time-to-Event Analyses 2024 Michał Abrahamowicz
Marie‐Eve Beauchamp
Anne‐Laure Boulesteix
Tim P. Morris
Willi Sauerbrei
Jay S. Kaufman
on behalf of the STRATOS Simulation Panel
+ PDF Chat Position Paper: Rethinking Empirical Research in Machine Learning: Addressing Epistemic and Methodological Challenges of Experimentation 2024 Moritz Herrmann
F. Julian D. Lange
Katharina Eggensperger
Giuseppe Casalicchio
Marcel Wever
Matthias Feurer
David Rügamer
Eyke Hüllermeier
Anne‐Laure Boulesteix
Bernd Bischl
+ PDF Chat To tweak or not to tweak. How exploiting flexibilities in gene set analysis leads to over-optimism 2024 Milena Wünsch
Christina Sauer
Moritz Herrmann
Ludwig Christian Hinske
Anne‐Laure Boulesteix
+ PDF Chat A comparison of hyperparameter tuning procedures for clinical prediction models: A simulation study 2024 Zoë S Dunias
Ben Van Calster
D. Timmerman
Anne‐Laure Boulesteix
Maarten van Smeden
+ Addressing researcher degrees of freedom through minP adjustment 2024 Maximilian M Mandl
Andrea Becker-Pennrich
Ludwig Christian Hinske
Sabine Hoffmann
Anne‐Laure Boulesteix
+ PDF Chat A white paper on good research practices in benchmarking: The case of cluster analysis 2023 Iven Van Mechelen
Anne‐Laure Boulesteix
Rainer Dangl
Nema Dean
Christian Hennig
Friedrich Leisch
Douglas Steinley
Matthijs J. Warrens
+ PDF Chat Prediction approaches for partly missing multi‐omics covariate data: A literature review and an empirical comparison study 2023 Roman Hornung
Frederik Ludwigs
Jonas Hagenberg
Anne‐Laure Boulesteix
+ PDF Chat Explaining the optimistic performance evaluation of newly proposed methods: A cross‐design validation experiment 2023 Christina Nießl
Sabine Hoffmann
Theresa Ullmann
Anne‐Laure Boulesteix
+ PDF Chat Phases of methodological research in biostatistics—Building the evidence base for new methods 2023 Georg Heinze
Anne‐Laure Boulesteix
Michael Kammer
Tim P. Morris
Ian R. White
+ PDF Chat Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges 2023 Bernd Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
Stefan Coors
Janek Thomas
Theresa Ullmann
Marc Becker
Anne‐Laure Boulesteix
+ Improving Software Engineering in Biostatistics: Challenges and Opportunities 2023 Daniel Sabanés Bové
Heidi Seibold
Anne‐Laure Boulesteix
Juliane Manitz
Alessandro Gasparini
Burak K. Guünhan
Oliver Boix
Armin Schuüler
Sven Fillinger
Sven Nahnsen
+ Prediction approaches for partly missing multi-omics covariate data: A literature review and an empirical comparison study 2023 Roman Hornung
Frederik Ludwigs
Jonas Hagenberg
Anne‐Laure Boulesteix
+ From RNA sequencing measurements to the final results: a practical guide to navigating the choices and uncertainties of gene set analysis 2023 Milena Wünsch
Christina Sauer
Patrick Callahan
Ludwig Christian Hinske
Anne‐Laure Boulesteix
+ Evaluating machine learning models in non-standard settings: An overview and new findings 2023 Roman Hornung
Malte Nalenz
Lennart Schneider
Andreas Bender
Ludwig Bothmann
Bernd Bischl
Thomas Augustin
Anne‐Laure Boulesteix
+ PDF Chat Planning preclinical confirmatory multicenter trials to strengthen translation from basic to clinical research – a multi-stakeholder workshop report 2022 Natascha Drude
Lorena Martinez‐Gamboa
Meggie Danziger
Anja Collazo
Silke Kniffert
Janine Wiebach
Gustav Nilsonne
Frank Konietschke
Sophie K. Piper
Samuel Pawel
+ PDF Chat Planning preclinical confirmatory multicenter trials to strengthen translation from basic to clinical research – a multi-stakeholder workshop report 2022 Natascha Drude
Lorena Martinez‐Gamboa
Meggie Danziger
Anja Collazo
Silke Kniffert
Janine Wiebach
Gustav Nilsonne
Frank Konietschke
Sophie K. Piper
Samuel Pawel
+ To adjust or not to adjust: It is not the tests you perform that count, but how you report them 2022 Anne‐Laure Boulesteix
Sabine Hoffmann
+ Explaining the optimistic performance evaluation of newly proposed methods: a cross-design validation experiment 2022 Christina Nießl
Sabine Hoffmann
Theresa Ullmann
Anne‐Laure Boulesteix
+ Phases of methodological research in biostatistics - building the evidence base for new methods 2022 Georg Heinze
Anne‐Laure Boulesteix
Michael N. Kammer
Tim P. Morris
Ian R. White
+ PDF Chat Validation of cluster analysis results on validation data: A systematic framework 2021 Theresa Ullmann
Christian Hennig
Anne‐Laure Boulesteix
+ PDF Chat Over‐optimism in benchmark studies and the multiplicity of design and analysis options when interpreting their results 2021 Christina Nießl
Moritz Herrmann
Chiara Wiedemann
Giuseppe Casalicchio
Anne‐Laure Boulesteix
+ PH-0165 Differentiation of Pseudoprogression vs. True Progressive Disease using Contrast Clearance Analysis 2021 Raphael Bodensohn
Robert Forbrig
Stefanie Lietke
J Reis
Anne‐Laure Boulesteix
Ulrich Mansmann
Indrawati Hadi
Daniel F. Fleischmann
K.H.J. von Henning-Yoo
J. Mücke
+ Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges 2021 Bernd Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
Stefan Coors
Janek Thomas
Theresa Ullmann
Marc Becker
Anne‐Laure Boulesteix
+ Validation of cluster analysis results on validation data: A systematic framework 2021 Theresa Ullmann
Christian Hennig
Anne‐Laure Boulesteix
+ PDF Chat Introduction to statistical simulations in health research 2020 Anne‐Laure Boulesteix
Rolf H. H. Groenwold
Michał Abrahamowicz
Harald Binder
Matthias Briel
Roman Hornung
Tim P. Morris
Jörg Rahnenführer
Willi Sauerbrei
+ PDF Chat Examining the robustness of observational associations to model, measurement and sampling uncertainty with the vibration of effects framework 2020 Simon Klau
Sabine Hoffmann
Chirag J. Patel
John P. A. Ioannidis
Anne‐Laure Boulesteix
+ PDF Chat Large-scale benchmark study of survival prediction methods using multi-omics data 2020 Moritz Herrmann
Philipp Probst
Roman Hornung
Vindi Jurinović
Anne‐Laure Boulesteix
+ On the asymptotic behaviour of the variance estimator of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e208" altimg="si7.svg"><mml:mi>U</mml:mi></mml:math>-statistic 2020 Mathias Fuchs
Roman Hornung
Anne‐Laure Boulesteix
Riccardo De Bin
+ Modelling Individual Response to Treatment and Its Uncertainty:A Review of Statistical Methods and Challenges for Future Research 2020 Ulrich Mansmann
Anne‐Laure Boulesteix
+ PDF Chat Combining clinical and molecular data in regression prediction models: insights from a simulation study 2019 Riccardo De Bin
Anne‐Laure Boulesteix
Axel Benner
Natália Becker
Willi Sauerbrei
+ PDF Chat Essential guidelines for computational method benchmarking 2019 Lukas M. Weber
Wouter Saelens
Robrecht Cannoodt
Charlotte Soneson
Alexander Hapfelmeier
Paul P. Gardner
Anne‐Laure Boulesteix
Yvan Saeys
Mark D. Robinson
+ Sampling uncertainty versus method uncertainty: A general framework with applications to omics biomarker selection 2019 Simon Klau
Marie‐Laure Martin‐Magniette
Anne‐Laure Boulesteix
Sabine Hoffmann
+ PDF Chat Hyperparameters and tuning strategies for random forest 2019 Philipp Probst
Marvin Wright
Anne‐Laure Boulesteix
+ Tunability: Importance of Hyperparameters of Machine Learning Algorithms 2019 Philipp Probst
Anne‐Laure Boulesteix
Bernd Bischl
+ Essential guidelines for computational method benchmarking 2018 Lukas M. Weber
Wouter Saelens
Robrecht Cannoodt
Charlotte Soneson
Alexander Hapfelmeier
Paul P. Gardner
Anne‐Laure Boulesteix
Yvan Saeys
Mark D. Robinson
+ Benchmarking in cluster analysis: A white paper 2018 Iven Van Mechelen
Anne‐Laure Boulesteix
Rainer Dangl
Nema Dean
Isabelle Guyon
Christian Hennig
Friedrich Leisch
Douglas Steinley
+ Tunability: Importance of Hyperparameters of Machine Learning Algorithms 2018 Philipp Probst
Bernd Bischl
Anne‐Laure Boulesteix
+ Essential guidelines for computational method benchmarking 2018 Lukas M. Weber
Wouter Saelens
Robrecht Cannoodt
Charlotte Soneson
Alexander Hapfelmeier
Paul P. Gardner
Anne‐Laure Boulesteix
Yvan Saeys
Mark D. Robinson
+ PDF Chat On the necessity and design of studies comparing statistical methods 2017 Anne‐Laure Boulesteix
Harald Binder
Michał Abrahamowicz
Willi Sauerbrei
+ PDF Chat Towards evidence-based computational statistics: lessons from clinical research on the role and design of real-data benchmark studies 2017 Anne‐Laure Boulesteix
Rory Wilson
Alexander Hapfelmeier
+ PDF Chat Detection of influential points as a byproduct of resampling-based variable selection procedures 2017 Riccardo De Bin
Anne‐Laure Boulesteix
Willi Sauerbrei
+ To tune or not to tune the number of trees in random forest 2017 Philipp Probst
Anne‐Laure Boulesteix
+ To tune or not to tune the number of trees in random forest? 2017 Philipp Probst
Anne‐Laure Boulesteix
+ PDF Chat Erratum to: Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation 2016 Simone Wahl
Anne‐Laure Boulesteix
Astrid Zierer
Barbara Thorand
Mark A. van de Wiel
+ PDF Chat A computationally fast variable importance test for random forests for high-dimensional data 2016 Silke Janitza
Ender Celik
Anne‐Laure Boulesteix
+ PDF Chat Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation 2016 Simone Wahl
Anne‐Laure Boulesteix
Astrid Zierer
Barbara Thorand
Mark A. van de Wiel
+ PDF Chat A computationally fast variable importance test for random forests for high-dimensional data 2016 Silke Janitza
Ender Celik
Anne‐Laure Boulesteix
+ Categorical variables with many categories are preferentially selected in bootstrap‐based model selection procedures for multivariable regression models 2016 Susanne Rospleszcz
Silke Janitza
Anne‐Laure Boulesteix
+ PDF Chat Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment 2016 Roman Hornung
Anne‐Laure Boulesteix
David Causeur
+ Which Resampling-Based Error Estimator for Benchmark Studies? A Power Analysis with Application to PLS-LDA 2016 Anne‐Laure Boulesteix
+ Random forest for ordinal responses: Prediction and variable selection 2015 Silke Janitza
Gerhard Tutz
Anne‐Laure Boulesteix
+ PDF Chat Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications 2015 Silke Janitza
Harald Binder
Anne‐Laure Boulesteix
+ PDF Chat Subsampling Versus Bootstrapping in Resampling-Based Model Selection for Multivariable Regression 2015 Riccardo De Bin
Silke Janitza
Willi Sauerbrei
Anne‐Laure Boulesteix
+ On stability issues in deriving multivariable regression models 2014 Willi Sauerbrei
Anika Buchholz
Anne‐Laure Boulesteix
Harald Binder
+ Random Forests for Ordinal Response Data: Prediction and Variable Selection 2014 Silke Janitza
Gerhard Tutz
Anne‐Laure Boulesteix
+ Categorical variables with many categories arepreferentially selected in model selection procedures for multivariable regression models on bootstrap samples 2014 Susanne Rospleszcz
Silke Janitza
Anne‐Laure Boulesteix
+ Machine learning versus statistical modeling 2014 Anne‐Laure Boulesteix
Matthias Schmid
+ A U-statistic estimator for the variance of resampling-based error estimators 2013 Mathias Fuchs
Roman Hornung
Riccardo De Bin
Anne‐Laure Boulesteix
+ Correcting the Optimal Resampling‐Based Error Rate by Estimating the Error Rate of Wrapper Algorithms 2013 Christoph Bernau
Thomas Augustin
Anne‐Laure Boulesteix
+ PDF Chat A Plea for Neutral Comparison Studies in Computational Sciences 2013 Anne‐Laure Boulesteix
Sabine Lauer
Manuel J. A. Eugster
+ PDF Chat Iterative Reconstruction of High-Dimensional Gaussian Graphical Models Based on a New Method to Estimate Partial Correlations under Constraints 2013 Vincent Guillemot
Andreas Bender
Anne‐Laure Boulesteix
+ PDF Chat An AUC-based permutation variable importance measure for random forests 2013 Silke Janitza
Carolin Strobl
Anne‐Laure Boulesteix
+ Complexity Selection with Cross-validation for Lasso and Sparse Partial Least Squares Using High-Dimensional Data 2013 Anne‐Laure Boulesteix
Adrian Richter
Christoph Bernau
+ A U-statistic estimator for the variance of resampling-based error estimators 2013 Mathias Fuchs
Roman Hornung
Riccardo De Bin
Anne‐Laure Boulesteix
+ On the Simultaneous Analysis of Clinical and Omics Data: A Comparison of Globalboosttest and Pre-validation Techniques 2013 Margret‐Ruth Oelker
Anne‐Laure Boulesteix
+ iPACOSE: an iterative algorithm for the estimation of gene regulation networks 2012 Vincent Guillemot
Andreas Bender
Anne‐Laure Boulesteix
+ PDF Chat Added predictive value of high-throughput molecular data to clinical data and its validation 2011 Anne‐Laure Boulesteix
Willi Sauerbrei
+ PDF Chat Over-optimism in bioinformatics research 2009 Anne‐Laure Boulesteix
+ PDF Chat Regularized estimation of large-scale gene association networks using graphical Gaussian models 2009 Nicole Krämer
Juliane Schäfer
Anne‐Laure Boulesteix
+ PDF Chat Conditional variable importance for random forests 2008 Carolin Strobl
Anne‐Laure Boulesteix
Thomas Kneib
Thomas Augustin
Achim Zeileis
+ PDF Chat Penalized Partial Least Squares with applications to B-spline transformations and functional data 2008 Nicole Krämer
Anne‐Laure Boulesteix
Gerhard Tutz
+ Comments on: Augmenting the bootstrap to analyze high dimensional genomic data 2008 Anne‐Laure Boulesteix
Athanassios Kondylis
Nicole Krämer
+ Maximally selected Chi-squared statistics and non-monotonic associations: An exact approach based on two cutpoints 2007 Anne‐Laure Boulesteix
Carolin Strobl
+ PDF Chat Unbiased split selection for classification trees based on the Gini Index 2006 Carolin Strobl
Anne‐Laure Boulesteix
Thomas Augustin
+ PDF Chat Maximally Selected Chi‐Square Statistics and Binary Splits of Nominal Variables 2006 Anne‐Laure Boulesteix
+ Maximally Selected Chi-square Statistics for Ordinal Variables 2006 Anne‐Laure Boulesteix
+ Maximally selected chi-square statistics and umbrella orderings 2006 Anne‐Laure Boulesteix
Carolin Strobl
+ Penalized Partial Least Squares Based on B-Splines Transformations 2006 Nicole Krämer
Anne‐Laure Boulesteix
Gerhard Tutz
+ Stochastic modeling for the COMET-assay 2003 Anne‐Laure Boulesteix
Volker Hösel
Volkmar Liebscher
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
13
+ PDF Chat Towards evidence-based computational statistics: lessons from clinical research on the role and design of real-data benchmark studies 2017 Anne‐Laure Boulesteix
Rory Wilson
Alexander Hapfelmeier
13
+ PDF Chat A Plea for Neutral Comparison Studies in Computational Sciences 2013 Anne‐Laure Boulesteix
Sabine Lauer
Manuel J. A. Eugster
10
+ PDF Chat Unbiased Recursive Partitioning: A Conditional Inference Framework 2006 Torsten Hothorn
Kurt Hornik
Achim Zeileis
10
+ PDF Chat On the necessity and design of studies comparing statistical methods 2017 Anne‐Laure Boulesteix
Harald Binder
Michał Abrahamowicz
Willi Sauerbrei
9
+ PDF Chat OpenML 2014 Joaquin Vanschoren
Jan N. van Rijn
Bernd Bischl
Luı́s Torgo
8
+ PDF Chat Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications 2015 Silke Janitza
Harald Binder
Anne‐Laure Boulesteix
8
+ False-Positive Psychology 2011 Joseph P. Simmons
Leif D. Nelson
Uri Simonsohn
7
+ PDF Chat Using simulation studies to evaluate statistical methods 2019 Tim P. Morris
Ian R. White
Michael J. Crowther
7
+ Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples 2008 Harald Binder
Martin Schumacher
6
+ PDF Chat STRengthening Analytical Thinking for Observational Studies: the STRATOS initiative 2014 Willi Sauerbrei
Michał Abrahamowicz
Douglas G. Altman
Saskia le Cessie
James R. Carpenter
6
+ Reproducible research in statistics: A review and guidelines for the <i>Biometrical Journal</i> 2015 Benjamin Hofner
Matthias Schmid
Lutz Edler
6
+ A bootstrap resampling procedure for model building: Application to the cox regression model 1992 Willi Sauerbrei
Martin Schumacher
6
+ The bootstrap and identification of prognostic factors via cox's proportional hazards regression model 1985 Chen‐Hsin Chen
Stephen L. George
5
+ PDF Chat Subsampling Versus Bootstrapping in Resampling-Based Model Selection for Multivariable Regression 2015 Riccardo De Bin
Silke Janitza
Willi Sauerbrei
Anne‐Laure Boulesteix
5
+ The Statistical Evaluation of Medical Tests for Classification and Prediction 2005 Margaret S. Pepe
5
+ Maximally Selected Chi-square Statistics for Ordinal Variables 2006 Anne‐Laure Boulesteix
5
+ PDF Chat Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models 2008 Harald Binder
Martin Schumacher
5
+ PDF Chat An AUC-based permutation variable importance measure for random forests 2013 Silke Janitza
Carolin Strobl
Anne‐Laure Boulesteix
5
+ Maximally Selected Rank Statistics 1992 Berthold Lausen
Martin Schumacher
5
+ PDF Chat Stability Selection 2010 Nicolai Meinshausen
Peter Bühlmann
5
+ Regularization Paths for Generalized Linear Models via Coordinate Descent. 2010 Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
5
+ PDF Chat <b>ranger</b>: A Fast Implementation of Random Forests for High Dimensional Data in <i>C++</i> and <i>R</i> 2017 Marvin Wright
Andreas Ziegler
5
+ On Maximally Selected Chi-Square Statistics 1991 James A. Koziol
5
+ PDF Chat Hyperparameters and tuning strategies for random forest 2019 Philipp Probst
Marvin Wright
Anne‐Laure Boulesteix
5
+ Ridge Regression: Biased Estimation for Nonorthogonal Problems 2000 Arthur E. Hoerl
Robert W. Kennard
5
+ A note on split selection bias in classification trees 2003 Yu‐Shan Shih
5
+ Approximating the Distribution of Maximally Selected McNemar's Statistics 2000 Daniel Rabinowitz
Rebecca A. Betensky
4
+ PDF Chat Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors 1999 Jennifer A. Hoeting
David Madigan
Adrian E. Raftery
Chris Volinsky
4
+ Assessment of Optimal Selected Prognostic Factors 2004 Berthold Lausen
Torsten Hothorn
Frank Bretz
Martin Schumacher
4
+ Maximally Selected x2 Statistics for kx 2 Tables 1999 Rebecca A. Betensky
Daniel Rabinowitz
4
+ Maximally Selected Rank Statistics for Dose-Response Problems 2002 Berthold Lausen
Rudolf Lerche
Martin Schumacher
4
+ PDF Chat Bootstrap Methods: Another Look at the Jackknife 1979 B. Efron
4
+ The Statistical Evaluation of Medical Tests for Classification and Prediction 2003 Margaret S. Pepe
4
+ PDF Chat To Explain or to Predict? 2010 Galit Shmueli
4
+ PDF Chat Boosting Algorithms: Regularization, Prediction and Model Fitting 2007 Peter Bühlmann
Torsten Hothorn
4
+ Regularization Paths for Generalized Linear Models via Coordinate Descent 2010 Jerome H. Friedman
Trevor Hastie
Robert Tibshirani
4
+ Regression with Categorical Data 2011 Gerhard Tutz
4
+ Assessment and comparison of prognostic classification schemes for survival data 1999 Erika Graf
Claudia Schmoor
Willi Sauerbrei
M. Schumacher
4
+ Evaluating the effect of optimized cutoff values in the assessment of prognostic factors 1996 Berthold Lausen
Martin Schumacher
4
+ On the exact distribution of maximally selected rank statistics 2003 Torsten Hothorn
Berthold Lausen
4
+ Maximally Selected Chi Square Statistics for Small Samples 1982 Jerry Halpern
4
+ PDF Chat Covariance-Regularized Regression and Classification for high Dimensional Problems 2009 Daniela Witten
Robert Tibshirani
3
+ Bootstrap Methods: A Guide for Practitioners and Researchers 2007 Michael R. Chernick
3
+ PDF Chat Conditional variable importance for random forests 2008 Carolin Strobl
Anne‐Laure Boulesteix
Thomas Kneib
Thomas Augustin
Achim Zeileis
3
+ Overview and Recent Advances in Partial Least Squares 2006 Roman Rosipal
Nicole Krämer
3
+ Weighted k-Nearest-Neighbor Techniques and Ordinal Classification 2004 Klaus Hechenbichler
Klaus Schliep
3
+ The Elements of Statistical Learning 2001 Trevor Hastie
J. Friedman
Robert Tibshirani
3
+ Sparse inverse covariance estimation with the graphical lasso 2007 Jerome H. Friedman
Trevor Hastie
R. Tibshirani
3
+ PDF Chat Unbiased split selection for classification trees based on the Gini Index 2006 Carolin Strobl
Anne‐Laure Boulesteix
Thomas Augustin
3