Average pure-state entanglement entropy in spin systems with SU(2) symmetry

Type: Article

Publication Date: 2023-12-01

Citations: 3

DOI: https://doi.org/10.1103/physrevb.108.245101

Abstract

We study the effect that the SU(2) symmetry, and the rich Hilbert space structure that it generates in lattice spin systems, has on the average entanglement entropy of highly excited eigenstates of local Hamiltonians and of random pure states. Focusing on the zero total magnetization sector $({J}_{z}=0)$ for different fixed total spin $J$, we argue that the average entanglement entropy of highly excited eigenstates of quantum-chaotic Hamiltonians and of random pure states has a leading volume-law term whose coefficient ${s}_{A}$ depends on the spin density $j=J/(\mathfrak{j}L)$, with ${s}_{A}(j\ensuremath{\rightarrow}0)=ln(2\phantom{\rule{0.16em}{0ex}}\mathfrak{j}+1)$ and ${s}_{A}(j\ensuremath{\rightarrow}1)=0$, where $\mathfrak{j}$ is the microscopic spin. We provide numerical evidence that ${s}_{A}$ is smaller in highly excited eigenstates of integrable interacting Hamiltonians, which lends support to the expectation that the average eigenstate entanglement entropy can be used as a diagnostic of quantum chaos and integrability for Hamiltonians with non-Abelian symmetries. In the context of Hamiltonian eigenstates we consider spins $\mathfrak{j}=\frac{1}{2}$ and 1, while for our calculations based on random pure states we focus on the spin $\mathfrak{j}=\frac{1}{2}$ case.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Average pure-state entanglement entropy in spin systems with SU(2) symmetry 2023 Rohit Patil
Lucas Hackl
George R. Fagan
Marcos Rigol
+ Eigenstate entanglement entropy in the integrable spin-$\frac{1}{2}$ XYZ model 2023 Rafał Świętek
Maksymilian Kliczkowski
Lev Vidmar
Marcos Rigol
+ PDF Chat Eigenstate entanglement entropy in the integrable spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:mo> </mml:mo><mml:mrow><mml:mi>X</mml:mi><mml:mi>Y</mml:mi><mml:mi>Z</mml:mi></mml:mrow></mml:math> model 2024 Rafał Świętek
Maksymilian Kliczkowski
Lev Vidmar
Marcos Rigol
+ PDF Chat Eigenstate thermalization hypothesis and integrability in quantum spin chains 2015 Vincenzo Alba
+ PDF Chat Entanglement and matrix elements of observables in interacting integrable systems 2019 Tyler LeBlond
Krishnanand Mallayya
Lev Vidmar
Marcos Rigol
+ PDF Chat Eigenstate Entanglement Entropy in Random Quadratic Hamiltonians 2020 Patrycja Łydżba
Marcos Rigol
Lev Vidmar
+ PDF Chat Eigenstate entanglement in integrable collective spin models 2022 Meenu Kumari
Álvaro M. Alhambra
+ Typical entanglement entropy in systems with particle-number conservation 2023 Yale Cheng
Rohit Patil
Yicheng Zhang
Marcos Rigol
Lucas Hackl
+ Eigenstate entanglement in integrable collective spin models 2021 Meenu Kumari
Álvaro M. Alhambra
+ PDF Chat Eigenstate thermalization for observables that break Hamiltonian symmetries and its counterpart in interacting integrable systems 2020 Tyler LeBlond
Marcos Rigol
+ PDF Chat Volume-Law Entanglement Entropy of Typical Pure Quantum States 2022 Eugenio Bianchi
Lucas Hackl
Mario Kieburg
Marcos Rigol
Lev Vidmar
+ PDF Chat Integral fluctuation theorem and generalized Clausius inequality for microcanonical and pure states 2022 Robin Heveling
Jiaozi Wang
Robin Steinigeweg
Jochen Gemmer
+ PDF Chat Average entanglement entropy of midspectrum eigenstates of quantum-chaotic interacting Hamiltonians 2023 Maksymilian Kliczkowski
Rafał Świętek
Lev Vidmar
Marcos Rigol
+ Average entanglement entropy of midspectrum eigenstates of quantum-chaotic interacting Hamiltonians 2023 Maksymilian Kliczkowski
Rafał Świętek
L. Vidmar
M. Rigol
+ PDF Chat Stable infinite-temperature eigenstates in SU(2)-symmetric nonintegrable models 2024 Christopher J. Turner
Marcin Szyniszewski
Bhaskar Mukherjee
Ronald Melendrez
Hitesh J. Changlani
Arijeet Pal
+ PDF Chat Eigenstate capacity and Page curve in fermionic Gaussian states 2021 Budhaditya Bhattacharjee
Pratik Nandy
Tanay Pathak
+ Eigenstate Thermalization and its breakdown in Quantum Spin Chains with Inhomogeneous Interactions 2023 Ding-Zu Wang
Hao Zhu
Jian Cui
Javier Argüello-Luengo
Maciej Lewenstein
Guo‐Feng Zhang
Piotr Sierant
Shi-Ju Ran
+ PDF Chat On symmetry-resolved generalized entropies 2024 Fei Yan
Sara Murciano
Pasquale Calabrese
Robert Konik
+ PDF Chat Eigenstate thermalization and its breakdown in quantum spin chains with inhomogeneous interactions 2024 Ding-Zu Wang
Hao Zhu
Jian Cui
Javier Argüello-Luengo
Maciej Lewenstein
Guo‐Feng Zhang
Piotr Sierant
Shi-Ju Ran
+ PDF Chat Entanglement patterns of quantum chaotic Hamiltonians with a scalar U(1) charge 2024 Christopher M. Langlett
Joaquin F. Rodriguez-Nieva