On Narrow Operators from $$L_p$$ into Operator Ideals

Type: Article

Publication Date: 2022-08-30

Citations: 5

DOI: https://doi.org/10.1007/s00009-022-02118-y

Abstract

Abstract It is well known that every $$l_2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>l</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:math> -strictly singular operator from $$L_p$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:math> , $$1&lt;p&lt;\infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>&lt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&lt;</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> to any Banach space X with an unconditional basis is narrow. In this article, we extend this result to the setting of Banach spaces without an unconditional basis. We show that if $$1 \le p,r &lt;\infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>r</mml:mi> <mml:mo>&lt;</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> , then every $$\ell _2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:math> -strictly singular operator T from $$L_p $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:math> into the Schatten–von Neumann r -class $$C_r$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>r</mml:mi> </mml:msub> </mml:math> is narrow. This is a noncommutative complement to results in Mykhaylyuk et al. (in Israel J Math 203:81–108, 2014).

Locations

  • Mediterranean Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Narrow and $\ell_2$-strictly singular operators from $L_p$ 2012 V. Mykhaylyuk
M. Popov
B. Randrianantoanina
G. Schechtman
+ Narrow and $\ell_2$-strictly singular operators from $L_p$ 2012 Volodymyr Mykhaylyuk
M. M. Popov
Beata Randrianantoanina
Gideon Schechtman
+ PDF Chat An estimate for narrow operators on $$L^p([0, 1])$$ 2020 Eugene Shargorodsky
Teo Sharia
+ PDF Chat Ideals of operators strictly singular on subspaces 1994 Michael J. Meyer
+ On S₁-strictly singular operators 2015 Edward Odell
Ricardo Teixeira
+ On Sums of Strictly Narrow Operators Acting from a Riesz Space to a Banach Space 2019 O. V. Maslyuchenko
M. M. Popov
+ The algebra of bounded linear operators\break on ℓ<sub> <i>p</i> </sub> ⊕ ℓ<sub> <i>p</i> </sub> has infinitely many closed ideals 2015 Thomas Schlumprecht
András Zsák
+ PDF Chat Smooth norms in dense subspaces of $$\ell _p(\Gamma )$$ and operator ranges 2023 Sheldon Dantas
Petr Hájek
Tommaso Russo
+ PDF Chat Approximation properties of tensor norms and operator ideals for Banach spaces 2020 Ju Myung Kim
+ On Enflo and narrow operators acting on $L_p$ 2012 Volodymyr Mykhaylyuk
M. M. Popov
Beata Randrianantoanina
+ PDF Chat On the boundedness of operators inLP(ιq)and Triebel-Lizorkin Spaces 2008 João Pedro Boto
+ PDF Chat Narrow operators and the Daugavet property for ultraproducts 2005 Dmitriy Bilik
Vladimir Kadets
Roman Shvidkoy
Dirk Werner
+ PDF Chat The Improvement on the Boundedness and Norm of a Class of Integral Operators onLpSpace 2015 Lifang Zhou
Jin Lu
+ Narrow and ℓ2-strictly singular operators from L p 2014 Volodymyr Mykhaylyuk
M. M. Popov
Beata Randrianantoanina
Gideon Schechtman
+ PDF Chat Operator and dual operator bases in linear topological spaces 1972 W.B. Johnson
+ PDF Chat Numerical radius preserving operators on 𝐵(𝐻) 1995 Jor-Ting Chan
+ PDF Chat The ideal of unconditionally $p$-compact operators 2017 Ju Myung Kim
+ PDF Chat The ideal of unconditionally $p$-compact operators 2017 Ju Myung Kim
+ PDF Chat A Banach space on which there are few operators 1988 Saharon Shelah
Juris Steprāns
+ PDF Chat Weak-polynomial convergence on a Banach space 1993 Jesús Á. Jaramillo
Ángeles Prieto