The ideal of unconditionally $p$-compact operators
The ideal of unconditionally $p$-compact operators
We investigate the ideal $\mathcal K_{\rm up}$, $1 \leq p \leq \infty $, of unconditionally $p$-compact operators. We obtain the isometric identities $\mathcal K_{\rm up}=\mathcal K_{\rm up}\circ \mathcal K_{\rm up}$, $\mathcal K^{\max }_{\rm up}=\mathcal L^{\rm sur}_{p^*}$, $\mathcal K^{\min }_{\rm up}=\widehat {\otimes }_{/w_{p^*}}$ and $\mathcal K_{\rm up}=\mathcal N_{\rm up}^{\rm Qdual}$ and …