Averages Along the Primes: Improving and Sparse Bounds

Type: Article

Publication Date: 2020-01-01

Citations: 7

DOI: https://doi.org/10.1515/conop-2020-0003

Abstract

Abstract Consider averages along the prime integers β„™ given by <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mo>π’œ</m:mo> </m:mrow> <m:mi>N</m:mi> </m:msub> <m:mi>f</m:mi> <m:mo>(</m:mo> <m:mi>x</m:mi> <m:mo>)</m:mo> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:munder> <m:mo>βˆ‘</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mo>𝕇</m:mo> <m:mo>:</m:mo> <m:mi>p</m:mi> <m:mo>≀</m:mo> <m:mi>N</m:mi> </m:mrow> </m:munder> <m:mrow> <m:mo>(</m:mo> <m:mo>log</m:mo> <m:mi>p</m:mi> <m:mo>)</m:mo> <m:mi>f</m:mi> <m:mo>(</m:mo> <m:mi>x</m:mi> <m:mo>-</m:mo> <m:mi>p</m:mi> <m:mo>)</m:mo> <m:mo>.</m:mo> </m:mrow> </m:mrow> </m:math> {\mathcal{A}_N}f(x) = {N^{ - 1}}\sum\limits_{p \in \mathbb{P}:p \le N} {(\log p)f(x - p).} These averages satisfy a uniform scale-free β„“ p -improving estimate. For all 1 &lt; p &lt; 2, there is a constant C p so that for all integer N and functions f supported on [0, N ], there holds <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msup> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> <m:mo>/</m:mo> <m:msup> <m:mi>p</m:mi> <m:mo>β€²</m:mo> </m:msup> </m:mrow> </m:msup> <m:msub> <m:mrow> <m:mrow> <m:mrow> <m:mo>β€–</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mo>π’œ</m:mo> </m:mrow> <m:mi>N</m:mi> </m:msub> <m:mi>f</m:mi> </m:mrow> <m:mo>β€–</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mrow> <m:mi>𝓁</m:mi> <m:msup> <m:mi>p</m:mi> <m:mo>β€²</m:mo> </m:msup> </m:mrow> </m:msub> <m:mo>≀</m:mo> <m:msub> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mi>p</m:mi> </m:msub> <m:msup> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:msub> <m:mrow> <m:mrow> <m:mrow> <m:mo>β€–</m:mo> <m:mi>f</m:mi> <m:mo>β€–</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mrow> <m:mi>𝓁</m:mi> <m:mi>p</m:mi> </m:mrow> </m:msub> <m:mo>.</m:mo> </m:mrow> </m:math> {N^{ - 1/p'}}{\left\| {{\mathcal{A}_N}f} \right\|_{\ell p'}} \le {C_p}{N^{ - 1/p}}{\left\| f \right\|_{\ell p}}. The maximal function π’œ * f = sup N |π’œ N f | satisfies ( p , p ) sparse bounds for all 1 &lt; p &lt; 2. The latter are the natural variants of the scale-free bounds. As a corollary, π’œ * is bounded on β„“ p ( w ), for all weights w in the Muckenhoupt π’œ p class. No prior weighted inequalities for π’œ * were known.

Locations

  • Concrete Operators - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Averages Along the Primes: Improving and Sparse Bounds 2019 Rui Han
Ben Krause
Michael T. Lacey
Fan Yang
+ Averaging with the Divisor Function: $\ell^p$-improving and Sparse Bounds 2021 Christina Giannitsi
+ Averaging with the Divisor Function: $\ell^p$-improving and Sparse Bounds 2021 Christina Giannitsi
+ AVERAGING WITH THE DIVISOR FUNCTION: β„“p-IMPROVING AND SPARSE BOUNDS 2022 Christina Giannitsi
+ Improving and Maximal Inequalities for Primes in Progressions 2021 Christina Giannitsi
Michael T. Lacey
Hamed Mousavi
Yaghoub Rahimi
+ PDF Chat Certain averages on the π‘Ž-adic numbers 1992 NakhlΓ© H. Asmar
Radhakrishnan Nair
+ Some theorems on multiplicative orders modulo p on average 2019 Sungjin Kim
+ On the greatest prime factor of (π‘Žπ‘+1)(π‘Žπ‘+1) 2002 Pietro Corvaja
Umberto Zannier
+ PDF Chat Averages along the square integers β„“p-improving and sparse inequalities 2021 Rui Han
Michael T. Lacey
Fan Yang
+ PDF Chat Sums of One Prime Power and Four Prime Cubes in Short Intervals 2023 Gen Li
Xianjiu Huang
Xiaoming Pan
Li Yang
+ 𝐿^{𝑝} improving bounds for averages along curves 2003 Terence Tao
James Wright
+ On the decomposition of $n!$ into primes 2006 Mehdi Hassani
+ Sums of Powers of Primes in Arithmetic Progression 2023 Muhammet Boran
John Byun
Zhangze Li
Steven J. Miller
Stephanie Reyes
+ PDF Chat On the gaps between consecutive primes 2022 Yu‐Chen Sun
Hao Pan
+ Approximating the number of integers without large prime factors 2005 Koji Suzuki
+ PDF Chat Averaging effects on irregularities in the distribution of primes in arithmetic progressions 1985 Richard H. Hudson
+ PDF Chat Sieving the positive integers by small primes 1988 D. A. Goldston
Kevin S. McCurley
+ PDF Chat Divisor-bounded multiplicative functions in short intervals 2023 Alexander P. Mangerel
+ PDF Chat On the average of the sum-of-p-prime-divisors function 2002 Sukumar Das Adhikari
Giovanni Coppola
Anirban Mukhopadhyay
+ PDF Chat On products of primes and almost primes in arithmetic progressions 2022 Lilu Zhao

Works Cited by This (11)

Action Title Year Authors
+ PDF Chat $L^p$ boundedness of discrete singular Radon transforms 2005 Alexandru D. Ionescu
Stephen Wainger
+ PDF Chat An endpoint estimate for the discrete spherical maximal function 2003 Alexandru D. Ionescu
+ PDF Chat Pointwise ergodic theorems for arithmetic sets 1989 Jean Bourgain
+ On the maximal ergodic theorem for certain subsets of the integers 1988 Jean Bourgain
+ Pointwise ergodic theorem along the prime numbers 1988 ΜÑté Wierdl
+ $$\ell ^p\left( \mathbb {Z}^d\right) $$ β„“ p Z d -estimates for discrete operators of Radon type: variational estimates 2017 Mariusz Mirek
Elias M. Stein
Bartosz Trojan
+ PDF Chat Cotlar’s Ergodic Theorem Along the Prime Numbers 2015 Mariusz Mirek
Bartosz Trojan
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>β„“</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>-estimates for discrete operators of Radon type: Maximal functions and vector-valued estimates 2018 Mariusz Mirek
Elias M. Stein
Bartosz Trojan
+ PDF Chat Sparse bounds for the discrete cubic Hilbert transform 2018 Amalia Culiuc
Robert Kesler
Michael T. Lacey
+ PDF Chat Sparse bounds for the discrete spherical maximal functions 2019 Robert Kesler
Michael T. Lacey
D. Arias