Type: Article
Publication Date: 2020-01-01
Citations: 7
DOI: https://doi.org/10.1515/conop-2020-0003
Abstract Consider averages along the prime integers β given by <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mo>π</m:mo> </m:mrow> <m:mi>N</m:mi> </m:msub> <m:mi>f</m:mi> <m:mo>(</m:mo> <m:mi>x</m:mi> <m:mo>)</m:mo> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:munder> <m:mo>β</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>β</m:mo> <m:mo>π</m:mo> <m:mo>:</m:mo> <m:mi>p</m:mi> <m:mo>β€</m:mo> <m:mi>N</m:mi> </m:mrow> </m:munder> <m:mrow> <m:mo>(</m:mo> <m:mo>log</m:mo> <m:mi>p</m:mi> <m:mo>)</m:mo> <m:mi>f</m:mi> <m:mo>(</m:mo> <m:mi>x</m:mi> <m:mo>-</m:mo> <m:mi>p</m:mi> <m:mo>)</m:mo> <m:mo>.</m:mo> </m:mrow> </m:mrow> </m:math> {\mathcal{A}_N}f(x) = {N^{ - 1}}\sum\limits_{p \in \mathbb{P}:p \le N} {(\log p)f(x - p).} These averages satisfy a uniform scale-free β p -improving estimate. For all 1 < p < 2, there is a constant C p so that for all integer N and functions f supported on [0, N ], there holds <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msup> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> <m:mo>/</m:mo> <m:msup> <m:mi>p</m:mi> <m:mo>β²</m:mo> </m:msup> </m:mrow> </m:msup> <m:msub> <m:mrow> <m:mrow> <m:mrow> <m:mo>β</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mo>π</m:mo> </m:mrow> <m:mi>N</m:mi> </m:msub> <m:mi>f</m:mi> </m:mrow> <m:mo>β</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:msup> <m:mi>p</m:mi> <m:mo>β²</m:mo> </m:msup> </m:mrow> </m:msub> <m:mo>β€</m:mo> <m:msub> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mi>p</m:mi> </m:msub> <m:msup> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:msub> <m:mrow> <m:mrow> <m:mrow> <m:mo>β</m:mo> <m:mi>f</m:mi> <m:mo>β</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mi>p</m:mi> </m:mrow> </m:msub> <m:mo>.</m:mo> </m:mrow> </m:math> {N^{ - 1/p'}}{\left\| {{\mathcal{A}_N}f} \right\|_{\ell p'}} \le {C_p}{N^{ - 1/p}}{\left\| f \right\|_{\ell p}}. The maximal function π * f = sup N |π N f | satisfies ( p , p ) sparse bounds for all 1 < p < 2. The latter are the natural variants of the scale-free bounds. As a corollary, π * is bounded on β p ( w ), for all weights w in the Muckenhoupt π p class. No prior weighted inequalities for π * were known.