Sparse bounds for the discrete cubic Hilbert transform
Sparse bounds for the discrete cubic Hilbert transform
Consider the discrete cubic Hilbert transform defined on finitely supported functions $f$ on $\mathbb{Z}$ by \begin{eqnarray*} H_3f(n) = \sum_{m \not = 0} \frac{f(n- m^3)}{m}. \end{eqnarray*} We prove that there exists $r <2$ and universal constant $C$ such that for all finitely supported $f,g$ on $\mathbb{Z}$ there exists an $(r,r)$-sparse form …