Endpoint $\ell^r$ improving estimates for prime averages
Endpoint $\ell^r$ improving estimates for prime averages
Let $ \Lambda $ denote von Mangoldt's function, and consider the averages \begin{align*} A_N f (x) &=\frac{1}{N}\sum_{1\leq n \leq N}f(x-n)\Lambda(n) . \end{align*} We prove sharp $ \ell ^{p}$-improving for these averages, and sparse bounds for the maximal function. The simplest inequality is that for sets $ F, G\subset [0,N]$ there …