Hidden charge-conjugation, parity, and time-reversal symmetries and massive Goldstone (Higgs) modes in superconductors

Type: Article

Publication Date: 2018-09-04

Citations: 14

DOI: https://doi.org/10.1103/physrevb.98.094503

Abstract

A massive Goldstone (MG) mode, often referred to as a Higgs amplitude mode, is a collective excitation that arises in a system involving spontaneous breaking of a continuous symmetry, along with a gapless Nambu-Goldstone mode. It has been known in the previous studies that a pure amplitude MG mode emerges in superconductors if the dispersion of fermions exhibits the particle-hole (p-h) symmetry. However, clear understanding of the relation between the symmetry of the Hamiltonian and the MG modes has not been reached. Here we reveal the fundamental connection between the discrete symmetry of the Hamiltonian and the emergence of pure amplitude MG modes. To this end, we introduce nontrivial charge-conjugation ($\mathcal{C}$), parity ($\mathcal{P}$), and time-reversal ($\mathcal{T}$) operations that involve the swapping of pairs of wave vectors symmetrical with respect to the Fermi surface. The product of $\mathcal{CPT}$ (or its permutations) represents an exact symmetry analogous to the CPT theorem in the relativistic field theory. It is shown that a fermionic Hamiltonian with a p-h symmetric dispersion exhibits the discrete symmetries under $\mathcal{C},\phantom{\rule{0.16em}{0ex}}\mathcal{P},\phantom{\rule{0.16em}{0ex}}\mathcal{T}$, and $\mathcal{CPT}$. We find that in the superconducting ground state, $\mathcal{T}$ and $\mathcal{P}$ are spontaneously broken simultaneously with the U(1) symmetry. Moreover, we rigorously show that amplitude and phase fluctuations of the gap function are uncoupled due to the unbroken $\mathcal{C}$. In the normal phase, the MG and NG modes become degenerate, and they have opposite parity under $\mathcal{T}$. Therefore, we conclude that the lifting of the degeneracy in the superconducting phase and the resulting emergence of the pure amplitude MG mode can be identified as a consequence of the spontaneous breaking of $\mathcal{T}$ symmetry but not of $\mathcal{P}$ or U(1).

Locations

  • Physical review. B./Physical review. B - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Hidden Charge-Conjugation, Parity, Time-Reversal Symmetries and Higgs Modes in Superconductors 2018 Shunji Tsuchiya
Daisuke Yamamoto
Ryosuke Yoshii
Muneto Nitta
+ PDF Chat Counting Rules of Nambu–Goldstone Modes 2019 Haruki Watanabe
+ Formula for the Number of Nambu-Goldstone Modes 2019 Haruki Watanabe
+ PDF Chat Dispersion relations of Nambu-Goldstone modes at finite temperature and density 2015 Tomoya Hayata
Yoshimasa Hidaka
+ PDF Chat Interpolating relativistic and nonrelativistic Nambu-Goldstone and Higgs modes 2015 Michikazu Kobayashi
Muneto Nitta
+ CT or P Problem and Symmetric Gapped Fermion Solution 2022 Juven Wang
+ PDF Chat Quasi-Nambu-Goldstone modes in nonrelativistic systems 2015 Muneto Nitta
Daisuke Takahashi
+ Nambu–Goldstone Bosons Characterized by the Order Parameter in Spontaneous Symmetry Breaking 2017 Takashi Yanagisawa
+ PDF Chat Symmetric Mass Generation 2022 Juven Wang
Yi‐Zhuang You
+ PDF Chat Amplitude/Higgs Modes in Condensed Matter Physics 2015 David Pekker
C. M. Varma
+ Gapless Higgs mode in the Fulde-Ferrell-Larkin-Ovchinnikov state of a superconductor 2022 Z. J. Huang
C. S. Ting
Jian‐Xin Zhu
Shi‐Zeng Lin
+ PDF Chat Higgs amplitude mode in massless Dirac fermion systems 2016 Ming Lu
Haiwen Liu
Pei Wang
Xin Xie
+ An introduction to Goldstone boson physics and to the coset construction 2021 Daniel Naegels
+ An introduction to Goldstone boson physics and to the coset construction 2021 Daniel Naegels
+ PDF Chat Spontaneous symmetry breaking and Nambu–Goldstone modes in open classical and quantum systems 2020 Yoshimasa Hidaka
Yuki Minami
+ Emergence of the unconventional type-II Nambu-Goldstone modes in Bose superfluids 2019 Jian-Song Pan
W. Vincent Liu
Xiong‐Jun Liu
+ PDF Chat Topological Higgs amplitude modes in strongly interacting superfluids 2021 Junsen Wang
Youjin Deng
Wei Zheng
+ Emergent $\mathcal{PT}$-symmetry breaking of Anderson-Bogoliubov modes in Fermi superfluids 2021 Jian-Song Pan
Wei Yi
Jiangbin Gong
+ Emergence of multiple Higgs modes due to spontaneous breakdown of $\mathbb{Z}_2$ symmetry in a particle-hole symmetric superconductor 2021 Shunji Tsuchiya
+ Emergence of the unconventional type-II Nambu-Goldstone modes 2019 Jian-Song Pan
W. Vincent Liu
Xiong‐Jun Liu

Works Cited by This (26)

Action Title Year Authors
+ PDF Chat Fano resonance through Higgs bound states in tunneling of Nambu-Goldstone modes 2015 Takeru Nakayama
Ippei Danshita
Tetsuro Nikuni
Shunji Tsuchiya
+ PDF Chat Amplitude Higgs mode in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>2</mml:mn><mml:mi>H</mml:mi><mml:mo>−</mml:mo><mml:msub><mml:mtext>NbSe</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:math>superconductor 2014 Marie-Aude MĂ©asson
Y. Gallais
M. Cazayous
Bernard Clair
P. RodiĂšre
Laurent Cario
A. Sacuto
+ PDF Chat Fate of the Higgs Mode Near Quantum Criticality 2013 Snir Gazit
Daniel K. Podolsky
Assa Auerbach
+ PDF Chat Higgs Amplitude Mode in the BCS Superconductors<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Nb</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mtext mathvariant="normal">−</mml:mtext><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi>Ti</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mi mathvariant="bold">N</mml:mi></mml:math>Induced by Terahertz Pulse Excitation 2013 Ryusuke Matsunaga
Yuki Hamada
Kazumasa Makise
Yoshinori Uzawa
Hirotaka Terai
Zhen Wang
Ryo Shimano
+ PDF Chat Observation of Resonance Condensation of Fermionic Atom Pairs 2004 C. A. Regal
Markus Greiner
D. S. Jin
+ Field theories with « Superconductor » solutions 1961 Jared V. Goldstone
+ PDF Chat Coherent dynamics of macroscopic electronic order through a symmetry breaking transition 2010 R. V. Yusupov
T. Mertelj
Viktor V. Kabanov
S. Brazovskiǐ
P. KuĆĄar
Jiun‐Haw Chu
I. R. Fisher
D. Mihailović
+ PDF Chat Quantum Magnets under Pressure: Controlling Elementary Excitations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>TlCuCl</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> 2008 Christian RĂŒegg
B. Normand
M. Matsumoto
A. Furrer
D. F. McMorrow
Karl W. KrÀmer
H.U. GĂŒdel
S. N. Gvasaliya
H. Mutka
Martin Boehm
+ PDF Chat Higgs mode in a superfluid of Dirac fermions 2013 Shunji Tsuchiya
R. Ganesh
Tetsuro Nikuni
+ PDF Chat Detecting the Amplitude Mode of Strongly Interacting Lattice Bosons by Bragg Scattering 2011 Ulf Bissbort
Sören Götze
Yongqiang Li
Jannes Heinze
J. Krauser
Malte Weinberg
C. R. Becker
K. Sengstock
Walter Hofstetter