Improved Bounds for Progression-Free Sets in $C_{8}^{n}$

Type: Preprint

Publication Date: 2018-05-15

Citations: 1

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Improved Bounds for Progression-Free Sets in $C_{8}^{n}$ 2018 Fedor Petrov
Cosmin Pohoata
+ PDF Chat Improved bounds for progression-free sets in $$C_8^{n}$$ 2020 Fedor Petrov
Cosmin Pohoata
+ PDF Chat Progression-free sets in $\mathbb{Z}_4^n$ are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
PĂ©ter PĂĄl Pach
+ Towards $3n-4$ in groups of prime order 2023 Vsevolod F. Lev
Oriol Serra
+ PDF Chat Finding large 3-free sets I: The small n case 2007 William Gasarch
James R. Glenn
Clyde P. Kruskal
+ New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$ 2024 Christian Elsholtz
Laura Proske
Lisa Sauermann
+ Large Subsets of $\mathbb{Z}_m^n$ without Arithmetic Progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ A Motivated Rendition of the Ellenberg-Gijswijt Gorgeous proof that the Largest Subset of $F_3^n$ with No Three-Term Arithmetic Progression is $O(c^n)$, with $c=\root 3 \of {(5589+891\,\sqrt {33})}/8=2.75510461302363300022127...$ 2016 Doron Zeilberger
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
PĂ©ter PĂĄl Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
PĂ©ter PĂĄl Pach
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
PĂ©ter PĂĄl Pach
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
PĂ©ter PĂĄl Pach
+ PDF Chat Sets of Integers that do not Contain Long Arithmetic Progressions 2011 Kevin O’Bryant
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ PDF Chat Towards $3n-4$ in groups of prime order 2023 Vsevolod F. Lev
Oriol Serra
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 GĂĄbor HegedĂŒs
+ PDF Chat Finding Large Sets Without Arithmetic Progressions of Length Three: An Empirical View and Survey II 2025 William Gasarch
James R. Glenn
Clyde P. Kruskal
+ Strong Bounds for 3-Progressions 2023 Zander Kelley
Raghu Meka
+ PDF Chat Strong Bounds for 3-Progressions 2023 Zander Kelley
Raghu Meka
+ Rank counting and maximum subsets of $\mathbb{F}^n_q$ containing no right angles 2016 Gennian Ge
Chong Shangguan