An ideal criterion for torsion freeness

Type: Article

Publication Date: 1972-01-01

Citations: 2

DOI: https://doi.org/10.1090/s0002-9939-1972-0301001-7

Abstract

Auslander and Bridger have shown that, under conditions somewhat weaker than finite projective dimension, the “torsion freeness” properties of a module <italic>M</italic> (e.g. being reflexive, being the <italic>k</italic>th syzygy of another module) are determined by certain arithmetic conditions on the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Ext Superscript i Baseline left-parenthesis upper M comma upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mtext>Ext</mml:mtext> <mml:mi>i</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {Ext}^i}(M,R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper it is shown that a single ideal, the intersection of the annihilators of these modules, gives this same information. This ideal is then related to the Fitting invariants and invariant factors of <italic>M</italic>, and a computation is made of certain syzygies of a quotient of <italic>M</italic> (by a regular <italic>M</italic>-sequence).

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat An Ideal Criterion for Torsion Freeness 1972 Mark Bridger
+ Tilting theory and the finitistic dimension conjectures 2002 Lidia Angeleri Hügel
Jan Trlifaj
+ Torsion modules and ideal transforms 2012 M. P. Brodmann
R. Y. Sharp
+ Torsion modules and ideal transforms 1998 Markus Brodmann
R. Y. Sharp
+ PDF Chat Invariants for a class of torsion-free abelian groups 1989 Donald M. Arnold
C. Vinsonhaler
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>n</mml:mi></mml:math>-Coherence Relative to a Hereditary Torsion Theory 2020 Zhanmin Zhu
+ Torsions in cohomology of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="normal">SL</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> and congruence of modular forms 2022 Taiwang Deng
+ PDF Chat On the vanishing of 𝐸𝑥𝑡 1971 Mark Ramras
+ PDF Chat Some Homological Conjectures Over Idealization Rings 2024 I. V. S R. Nascimento
V. H. Jorge Pérez
T. H. Freitas
+ PDF Chat Krull dimension of modules over involution rings 1994 K. I. Beĭdar
E. R. Puczyłowski
P. F. Smith
+ PDF Chat An algorithm for Hodge ideals 2022 Guillem Blanco
+ PDF Chat Auslander’s 𝛿-invariants of Gorenstein local rings 1994 Songqing Ding
+ Decent intersection and Tor-rigidity for modules over local hypersurfaces 2012 Hailong Dao
+ Bounds on the torsion subgroups of Néron–Severi groups 2020 Hyuk Jun Kweon
+ PDF Chat Free derivation modules and a criterion for regularity 1973 Selmer Moen
+ PDF Chat Kategorie 𝒪, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe 1990 Wolfgang Soergel
+ On the finiteness properties of extension and torsion functors of local cohomology modules 2006 Kazem Khashyarmanesh
+ PDF Chat Torsionfree projective modules 1971 Mark L. Teply
+ Computing the torsion of the 𝑝-ramified module of a number field 2014 Frédéric Pitoun
Firmin Varescon
+ Kummer's criterion over $\Lambda$ and Hida's Congruence Module 1987 Jacques Tilouine