Krull dimension of modules over involution rings
Krull dimension of modules over involution rings
The following question of Lanski is answered positively in the case when a ring <italic>R</italic> with involution <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Superscript asterisk"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">^ \ast</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is Noetherian with respect to two-sided <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="asterisk"> <mml:semantics> <mml:mo>∗<!-- …