Conjugate Fourier series on certain solenoids

Type: Article

Publication Date: 1983-01-01

Citations: 6

DOI: https://doi.org/10.1090/s0002-9947-1983-0688979-9

Abstract

We consider an arbitrary noncyclic subgroup of the additive group<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Q"><mml:semantics><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="bold">Q</mml:mi></mml:mrow></mml:mrow><mml:annotation encoding="application/x-tex">{\mathbf {Q}}</mml:annotation></mml:semantics></mml:math></inline-formula>of rational numbers, denoted by<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Q Subscript bold a"><mml:semantics><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="bold">Q</mml:mi></mml:mrow></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="bold">a</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:annotation encoding="application/x-tex">{{\mathbf {Q}}_{\mathbf {a}}}</mml:annotation></mml:semantics></mml:math></inline-formula>, and its compact character group<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Sigma Subscript bold a"><mml:semantics><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="bold">a</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:annotation encoding="application/x-tex">{\Sigma _{\mathbf {a}}}</mml:annotation></mml:semantics></mml:math></inline-formula>. For<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 greater-than p greater-than normal infinity"><mml:semantics><mml:mrow><mml:mn>1</mml:mn><mml:mo>&gt;</mml:mo><mml:mi>p</mml:mi><mml:mo>&gt;</mml:mo><mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">1 &gt; p &gt; \infty</mml:annotation></mml:semantics></mml:math></inline-formula>, an abstract form of Marcel Riesz’s theorem on conjugate series is known. For<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"><mml:semantics><mml:mi>f</mml:mi><mml:annotation encoding="application/x-tex">f</mml:annotation></mml:semantics></mml:math></inline-formula>in<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper L Subscript p Baseline left-parenthesis normal upper Sigma Subscript bold a Baseline right-parenthesis"><mml:semantics><mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="fraktur">L</mml:mi></mml:mrow><mml:mi>p</mml:mi></mml:msub></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="bold">a</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">{\mathfrak {L}_p}({\Sigma _{\mathbf {a}}})</mml:annotation></mml:semantics></mml:math></inline-formula>, there is a function<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f overTilde"><mml:semantics><mml:mrow class="MJX-TeXAtom-ORD"><mml:mover><mml:mi>f</mml:mi><mml:mo stretchy="false">~<!-- ~ --></mml:mo></mml:mover></mml:mrow><mml:annotation encoding="application/x-tex">\tilde {f}</mml:annotation></mml:semantics></mml:math></inline-formula>in<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper L Subscript p Baseline left-parenthesis normal upper Sigma Subscript bold a Baseline right-parenthesis"><mml:semantics><mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="fraktur">L</mml:mi></mml:mrow><mml:mi>p</mml:mi></mml:msub></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="bold">a</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">{\mathfrak {L}_p}({\Sigma _{\mathbf {a}}})</mml:annotation></mml:semantics></mml:math></inline-formula>whose Fourier transform<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis f overTilde right-parenthesis Superscript ModifyingAbove With caret Baseline left-parenthesis alpha right-parenthesis"><mml:semantics><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:mover><mml:mi>f</mml:mi><mml:mo stretchy="false">~<!-- ~ --></mml:mo></mml:mover></mml:mrow><mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mover><mml:mrow /><mml:mo stretchy="false">^<!-- ^ --></mml:mo></mml:mover></mml:mrow></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi>α<!-- α --></mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">(\tilde {f})^{\hat {}}(\alpha )</mml:annotation></mml:semantics></mml:math></inline-formula>at<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha"><mml:semantics><mml:mi>α<!-- α --></mml:mi><mml:annotation encoding="application/x-tex">\alpha</mml:annotation></mml:semantics></mml:math></inline-formula>in<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Q Subscript bold a"><mml:semantics><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="bold">Q</mml:mi></mml:mrow></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="bold">a</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:annotation encoding="application/x-tex">{{\mathbf {Q}}_{\mathbf {a}}}</mml:annotation></mml:semantics></mml:math></inline-formula>is<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="minus i s g n alpha ModifyingAbove f With caret left-parenthesis alpha right-parenthesis"><mml:semantics><mml:mrow><mml:mo>−<!-- − --></mml:mo><mml:mi>i</mml:mi><mml:mspace width="thinmathspace" /><mml:mi>sgn</mml:mi><mml:mspace width="thinmathspace" /><mml:mi>α<!-- α --></mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mover><mml:mi>f</mml:mi><mml:mo stretchy="false">^<!-- ^ --></mml:mo></mml:mover></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>α<!-- α --></mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">- i\,\operatorname {sgn}\,\alpha \hat {f}(\alpha )</mml:annotation></mml:semantics></mml:math></inline-formula>. We show in this paper how to construct<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f overTilde"><mml:semantics><mml:mrow class="MJX-TeXAtom-ORD"><mml:mover><mml:mi>f</mml:mi><mml:mo stretchy="false">~<!-- ~ --></mml:mo></mml:mover></mml:mrow><mml:annotation encoding="application/x-tex">\tilde {f}</mml:annotation></mml:semantics></mml:math></inline-formula>explicitly as a pointwise limit almost everywhere on<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Sigma Subscript bold a"><mml:semantics><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="bold">a</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:annotation encoding="application/x-tex">{\Sigma _{\mathbf {a}}}</mml:annotation></mml:semantics></mml:math></inline-formula>of certain harmonic functions, as was done by Riesz for the circle group. Some extensions of this result are also presented.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Gauss sums and Fourier analysis on multiplicative subgroups of 𝑍_{𝑞} 1983 Harold G. Diamond
Frank Gerth
Jeffrey D. Vaaler
+ PDF Chat Fourier coefficients of continuous functions on compact groups 1983 Barbara Heiman
+ PDF Chat On the theory of biorthogonal polynomials 1988 Arieh Iserles
Syvert P. Nørsett
+ PDF Chat On 𝑝-power central polynomials 1980 David J. Saltman
+ PDF Chat Conjugate but non inner conjugate subfactors 1996 Marie Choda
+ PDF Chat Symmetry properties of the zero sets of nil-theta functions 1981 Sharon Goodman
+ PDF Chat Numbers generated by the reciprocal of 𝑒^{𝑥}-𝑥-1 1977 F. T. Howard
+ Multipliers for noncommutative Walsh-Fourier series 2015 Lian Wu
+ Periodic points of polynomials over finite fields 2022 Derek Garton
+ PDF Chat Convergence of Fourier series expansion related to free groups 1984 Gabriella Kuhn
+ PDF Chat Chevalley restriction theorem for vector-valued functions on quantum groups 2011 Martina Balagović
+ PDF Chat On a degenerate principal series of representations of 𝑈(2,2) 1978 Yang Hua
+ Cyclic multiplicity of a direct sum of forward and backward shifts 2022 Caixing Gu
+ PDF Chat Note on multiplicity 1988 Daniel J. Katz
+ PDF Chat On trigonometric series associated with separable, translation invariant subspaces of 𝐿^{∞}(𝐺) 1972 Ron C. Blei
+ PDF Chat Some prime numbers of the forms 2𝐴3ⁿ+1 and 2𝐴3ⁿ-1 1972 Hywel C Williams
C. R. Zarnke
+ PDF Chat On roots and subsemigroups of nilpotent groups 1971 Joseph E. Kuczkowski
+ PDF Chat Convolution operators on groups and multiplier theorems for Hermite and Laguerre expansions 1988 Jolanta Długosz
+ PDF Chat On primes 𝑝 with 𝜎(𝑝^{𝛼})=𝑚² 1987 J. Chidambaraswamy
P. V. Krishnaiah
+ PDF Chat On the principal series of 𝐺𝑙_{𝑛} over𝑝-adic fields 1973 Roger Howe