Ask a Question

Prefer a chat interface with context about you and your work?

Convolution operators on groups and multiplier theorems for Hermite and Laguerre expansions

Convolution operators on groups and multiplier theorems for Hermite and Laguerre expansions

Using harmonic analysis on nilpotent Lie groups the following theorem is proved. Let a sequence <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace a Subscript n Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>a</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>n</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {a_{\text {n}}}\}</mml:annotation> </mml:semantics> </mml:math> …