On the theory of biorthogonal polynomials
On the theory of biorthogonal polynomials
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi left-parenthesis x comma mu right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>φ<!-- φ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\varphi (x,\,\mu )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a distribution in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x element-of bold upper R"> <mml:semantics> …