Type: Article
Publication Date: 2015-04-06
Citations: 83
DOI: https://doi.org/10.1063/1.4917529
Ultra-violet emitters have several applications in the areas of sensing, water purification, and data storage. While the III-Nitride semiconductor system has the band gap region necessary for ultraviolet emission, achieving efficient ultraviolet solid state emitters remains a challenge due to the low p-type conductivity and high contact resistance in wide band gap AlGaN-based ultra-violet light emitters. In this work, we show that efficient interband tunneling can be used for non-equilibrium injection of holes into ultraviolet emitters. Polarization-engineered tunnel junctions were used to enhance tunneling probability by several orders of magnitude over a PN homojunction, leading to highly efficient tunnel injection of holes to ultraviolet light emitters. This demonstration of efficient interband tunneling introduces a new paradigm for design of ultra-violet light emitting diodes and diode lasers, and enables higher efficiency and lower cost ultra-violet emitters.