Zeta regularized products

Type: Article

Publication Date: 1993-01-01

Citations: 62

DOI: https://doi.org/10.1090/s0002-9947-1993-1100699-1

Abstract

If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda Subscript k"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\lambda _k}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a sequence of nonzero complex numbers, then we define the zeta regularized product of these numbers, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="product Underscript k Endscripts lamda Subscript k"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo movablelimits="false">∏<!-- ∏ --></mml:mo> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\prod \nolimits _k {{\lambda _k}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, to be <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="exp left-parenthesis negative upper Z prime left-parenthesis 0 right-parenthesis right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>exp</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi>Z</mml:mi> <mml:mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\exp ( - Z\prime (0))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Z left-parenthesis s right-parenthesis equals sigma-summation Underscript k equals 0 Overscript normal infinity Endscripts lamda Subscript k Superscript negative s"> <mml:semantics> <mml:mrow> <mml:mi>Z</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msubsup> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>k</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>s</mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">Z(s) = \sum \nolimits _{k = 0}^\infty {\lambda _k^{ - s}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We assume that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Z left-parenthesis s right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>Z</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">Z(s)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has analytic continuation to a neighborhood of the origin. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda Subscript k"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\lambda _k}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the sequence of positive eigenvalues of the Laplacian on a manifold, then the zeta regularized product is known as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="det prime normal upper Delta"> <mml:semantics> <mml:mrow> <mml:mo movablelimits="true" form="prefix">det</mml:mo> <mml:mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mml:mi> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\det \prime \Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the determinant of the Laplacian, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="product Underscript k Endscripts left-parenthesis lamda Subscript k Baseline minus lamda right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo movablelimits="false">∏<!-- ∏ --></mml:mo> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\prod \nolimits _k {({\lambda _k} - \lambda )}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is known as the functional determinant. The purpose of this paper is to discuss properties of the determinant and functional determinant for general sequences of complex numbers. We discuss asymptotic expansions of the functional determinant as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda right-arrow negative normal infinity"> <mml:semantics> <mml:mrow> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\lambda \to - \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and its relationship to the Weierstrass product. We give some applications to the theory of Barnes’ multiple gamma functions and elliptic functions. A new proof is given for Kronecker’s limit formula and the product expansion for Barnes’ double Stirling modular constant.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Determinant expression of Selberg zeta functions. II 1992 Shin-ya Koyama
+ PDF Chat Exponential sums of Lerch’s zeta functions 1985 Kai Wang
+ Telescoping, rational-valued series, and zeta functions 2005 J. Marshall Ash
Stefan Catoiu
+ The Lerch zeta and related functions of non-positive integer order 2009 Djurdje Cvijović
+ Archimedean zeta integrals for 𝐺𝐿(3)×𝐺𝐿(2) 2022 Miki Hirano
Taku Ishii
Tadashi Miyazaki
+ A theorem on zeta functions associated with polynomials 1999 Minking Eie
Kwang-Wu Chen
+ PDF Chat Integral motives and special values of zeta functions 2004 J. S. Milne
Niranjan Ramachandran
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$q$" id="E1"><mml:mi>q</mml:mi></mml:math>-Riemann zeta function 2004 Taekyun Kim
+ PDF Chat Some remarks concerning the number theoretic functions $\omega (n)$\ and $\Omega (n)$ 1973 Robert E. Dressler
J. Lune
+ Zeta functions 1991 Carlos Moreno
+ PDF Chat Conjugate Fourier series on certain solenoids 1983 Edwin Hewitt
G. Ritter
+ PDF Chat Determinant expression of Selberg zeta functions. III 1991 Shin-ya Koyama
+ PDF Chat Numbers generated by the reciprocal of 𝑒^{𝑥}-𝑥-1 1977 F. T. Howard
+ PDF Chat A note on 𝜁”(𝑠) and 𝜁”’(𝑠) 1996 C. Y. Yildirim
+ PDF Chat Riemann’s zeta function and beyond 2003 Stephen Gelbart
Stephen D. Miller
+ PDF Chat Zeta regularization of infinite products 2013 Mauro Spreafico
+ PDF Chat The 𝑘^{𝑡ℎ} prime is greater than 𝑘(ln𝑘+lnln𝑘-1) for 𝑘≥2 1999 Pierre Dusart
+ Tensor products of Minimal Holomorphic Representations 2001 Genkai Zhang
+ The $ζ$-regularized product over all primes 2015 Vadim V. Smirnov
+ Interpolated Apéry numbers, quasiperiods of modular forms, and motivic gamma functions 2021 Vasily Golyshev
Don Zagier