Common zeros of two Bessel functions. II. Approximations and tables

Type: Article

Publication Date: 1983-01-01

Citations: 2

DOI: https://doi.org/10.1090/s0025-5718-1983-0701635-7

Abstract

In [1] it was shown that two Bessel functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J Subscript nu Baseline left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>J</mml:mi> <mml:mi>ν<!-- ν --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{J_\nu }(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J Subscript mu Baseline left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>J</mml:mi> <mml:mi>μ<!-- μ --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{J_\mu }(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> could have two zeros which were common to both functions, and a computer program was made which takes approximate values of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="nu"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding="application/x-tex">\nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j Subscript nu comma k Baseline equals j Subscript mu comma h"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>h</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{j_{\nu ,k}} = {j_{\mu ,h}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j Subscript nu comma k plus n Baseline equals j Subscript mu comma h plus m"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>h</mml:mi> <mml:mo>+</mml:mo> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{j_{\nu , k + n}} = {j_{\mu ,h + m}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and from them computes the exact values. Here it will be shown how to find the necessary approximate values to initiate the computation. A table of the smaller ratios <italic>m</italic> : <italic>n</italic> with the orders of the functions less than one hundred is given.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Common zeros of two Bessel functions 1978 T. C. Benton
H. D. Knoble
+ Common Zeros of Two Bessel Functions Part II. Approximations and Tables 1983 T. C. Benton
+ PDF Chat A series expansion for the first positive zero of the Bessel functions 1984 Robert Piessens
+ PDF Chat Lower bounds for the zeros of Bessel functions 1977 Roger C. McCann
+ PDF Chat Approximate Closed-Form Formulas for the Zeros of the Bessel Polynomials 2012 Rafael G. Campos
Marisol L. Calderón
+ PDF Chat Roots of two transcendental equations involving spherical Bessel functions 1977 Robert L. Pexton
Arno D. Steiger
+ PDF Chat Common Zeros of Two Bessel Functions 1978 T. C. Benton
H. D. Knoble
+ PDF Chat Polynomials related to the Bessel functions 1975 F. T. Howard
+ PDF Chat Rational Chebyshev approximations for the modified Bessel functions 𝐼₀(𝑥) and 𝐼₁(𝑥) 1974 J. M. Blair
+ PDF Chat Complex zeros of the modified Bessel function $K\sb{n}(Z)$ 1972 R. Parnes
+ PDF Chat On common zeros of Legendre’s associated functions 1984 Norbert H. J. Lacroix
+ PDF Chat An upper bound for the first zero of Bessel functions 1982 Ll. G. Chambers
+ Elementary approximations for zeros of Bessel functions 1983 Carla Giordano
Andrea Laforgia
+ Bessel Function Approximations 1950 Ralph S. Phillips
Henry Malin
+ “Best possible” upper and lower bounds for the zeros of the Bessel function 𝐽_{𝜈}(𝑥) 1999 Changzheng Qu
R. Wong
+ Bessel Functions 1967 L. W. F. Elen
+ PDF Chat Rational Chebyshev approximations for the Bessel functions 𝐽₀(𝑥), 𝐽₁(𝑥), 𝑌₀(𝑥), 𝑌₁(𝑥) 1982 C. A. Wills
J. M. Blair
P. L. Ragde
+ PDF Chat Computation of modified Bessel functions and their ratios 1974 D. E. Amos
+ Some definite integrals of the product of two Bessel functions of the second kind: (order zero) 1974 M. L. Glasser
+ New Expansions of Bessel Functions of First Kind and Complex Argument 2013 Dhanesh G. Kurup
Aravinda Koithyar