Type: Article
Publication Date: 1983-01-01
Citations: 2
DOI: https://doi.org/10.1090/s0025-5718-1983-0701635-7
In [1] it was shown that two Bessel functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J Subscript nu Baseline left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>J</mml:mi> <mml:mi>ν<!-- ν --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{J_\nu }(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J Subscript mu Baseline left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>J</mml:mi> <mml:mi>μ<!-- μ --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{J_\mu }(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> could have two zeros which were common to both functions, and a computer program was made which takes approximate values of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="nu"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding="application/x-tex">\nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j Subscript nu comma k Baseline equals j Subscript mu comma h"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>h</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{j_{\nu ,k}} = {j_{\mu ,h}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j Subscript nu comma k plus n Baseline equals j Subscript mu comma h plus m"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>h</mml:mi> <mml:mo>+</mml:mo> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{j_{\nu , k + n}} = {j_{\mu ,h + m}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and from them computes the exact values. Here it will be shown how to find the necessary approximate values to initiate the computation. A table of the smaller ratios <italic>m</italic> : <italic>n</italic> with the orders of the functions less than one hundred is given.
Action | Title | Year | Authors |
---|---|---|---|
+ | On the common zeros of Bessel functions | 2003 |
Eugenia N. Petropoulou Panayiotis D. Siafarikas Ioannis D. Stabolas |
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Common zeros of two Bessel functions | 1978 |
T. C. Benton H. D. Knoble |
+ PDF Chat | Common Zeros of Two Bessel Functions | 1978 |
T. C. Benton H. D. Knoble |