An upper bound for the first zero of Bessel functions
An upper bound for the first zero of Bessel functions
It is shown, using the Rayleigh-Ritz method of the calculus of variations, that an upper bound for the first zero <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j Subscript v"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mi>v</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{j_v}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="z Superscript negative v Baseline …