Ask a Question

Prefer a chat interface with context about you and your work?

An upper bound for the first zero of Bessel functions

An upper bound for the first zero of Bessel functions

It is shown, using the Rayleigh-Ritz method of the calculus of variations, that an upper bound for the first zero <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j Subscript v"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mi>v</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{j_v}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="z Superscript negative v Baseline …