Lower bounds for the zeros of Bessel functions

Type: Article

Publication Date: 1977-01-01

Citations: 22

DOI: https://doi.org/10.1090/s0002-9939-1977-0442316-6

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j Subscript p comma n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{j_{p,n}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the <italic>n</italic>th positive zero of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J Subscript p Baseline comma p greater-than-or-slanted-equals 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>J</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{J_p},p \geqslant 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j Subscript p comma n Baseline greater-than-or-slanted-equals left-parenthesis j Subscript 0 comma n Superscript 2 Baseline plus p squared right-parenthesis Superscript 1 slash 2 Baseline period"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msubsup> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{j_{p,n}} \geqslant {( {j_{0,n}^2 + {p^2}} )^{1/2}}.</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula>

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ “Best possible” upper and lower bounds for the zeros of the Bessel function 𝐽_{𝜈}(𝑥) 1999 Changzheng Qu
R. Wong
+ PDF Chat An upper bound for the first zero of Bessel functions 1982 Ll. G. Chambers
+ PDF Chat Approximate Closed-Form Formulas for the Zeros of the Bessel Polynomials 2012 Rafael G. Campos
Marisol L. Calderón
+ PDF Chat Inequalities and monotonicity results for zeros of modified Bessel functions of purely imaginary order 1986 Andrea Laforgia
+ PDF Chat A series expansion for the first positive zero of the Bessel functions 1984 Robert Piessens
+ PDF Chat Higher monotonicity properties and inequalities for zeros of Bessel functions 1991 Laura Gori
Andrea Laforgia
Martin E. Muldoon
+ PDF Chat Complex zeros of the modified Bessel function $K\sb{n}(Z)$ 1972 R. Parnes
+ PDF Chat Lower Bounds for the Zeros of Bessel Functions 1977 Roger C. McCann
+ A LOWER BOUND FOR THE ZEROS OF THE BESSEL FUNCTIONS 1994 Árpád Elbert
Andrea Laforgia
+ PDF Chat Chebyshev expansions for the Bessel function 𝐽_{𝑛}(𝑧) in the complex plane 1983 John P. Coleman
Andrew Monaghan
+ PDF Chat Inequalities for modified Bessel functions 1974 Ingemar Nåsell
+ “Best Possible” Upper and Lower Bounds for the Zeros of the Bessel Function <i>J</i><sub><i>v</i></sub>(<i>x</i>) 2015 C.K. Qu
R. Wong
+ PDF Chat Rational Chebyshev approximations for the Bessel functions 𝐽₀(𝑥), 𝐽₁(𝑥), 𝑌₀(𝑥), 𝑌₁(𝑥) 1982 C. A. Wills
J. M. Blair
P. L. Ragde
+ PDF Chat Common zeros of two Bessel functions 1978 T. C. Benton
H. D. Knoble
+ PDF Chat Common zeros of two Bessel functions. II. Approximations and tables 1983 T. C. Benton
+ Bessel Functions 1967 L. W. F. Elen
+ PDF Chat Rational Chebyshev approximations for the modified Bessel functions 𝐼₀(𝑥) and 𝐼₁(𝑥) 1974 J. M. Blair
+ PDF Chat Comparison theorems for the 𝜈-zeroes of Legendre functions 𝑃^{𝑚}_{𝜈}(𝑧₀) when -1&lt;𝑧₀&lt;1 1991 Frank Baginski
+ PDF Chat Quadrature formulae using zeros of Bessel functions as nodes 1998 Riadh Ben Ghanem
+ PDF Chat Complete monotonicity of modified Bessel functions 1990 Mourad E. H. Ismail