Ruoqi Shen

Follow

Generating author description...

All published works
Action Title Year Authors
+ Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev 2024 Sinho Chewi
Murat A. Erdogdu
Mufan Li
Ruoqi Shen
Matthew S. Zhang
+ PDF Chat Private Convex Optimization in General Norms 2023 Sivakanth Gopi
Yin Tat Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
+ Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler 2023 Sivakanth Gopi
Yin Tat Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
+ FiLM: Fill-in Language Models for Any-Order Generation 2023 Tianxiao Shen
Hao Peng
Ruoqi Shen
Yao Fu
ZaĂŻd Harchaoui
Yejin Choi
+ Positional Description Matters for Transformers Arithmetic 2023 Ruoqi Shen
SĂ©bastien Bubeck
Ronen Eldan
Yin Tat Lee
Yuanzhi Li
Yi Zhang
+ Data Augmentation as Feature Manipulation 2022 Ruoqi Shen
SĂ©bastien Bubeck
Suriya Gunasekar
+ On Optimal Early Stopping: Over-informative versus Under-informative Parametrization 2022 Ruoqi Shen
Liyao Gao
Yi-An Ma
+ Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space 2022 Yunbum Kook
Yin Tat Lee
Ruoqi Shen
Santosh Vempala
+ Private Convex Optimization in General Norms 2022 Sivakanth Gopi
Yin Tat Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
+ Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators 2022 Yunbum Kook
Yin Tat Lee
Ruoqi Shen
Santosh Vempala
+ How to Fine-Tune Vision Models with SGD 2022 Ananya Kumar
Ruoqi Shen
SĂ©bastien Bubeck
Suriya Gunasekar
+ Near-Optimal Randomized Exploration for Tabular MDP. 2021 Zhihan Xiong
Ruoqi Shen
Qiwen Cui
Simon S. Du
+ PDF Chat Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions 2021 Yin Tat Lee
Ruoqi Shen
Kevin Tian
+ Randomized Exploration is Near-Optimal for Tabular MDP. 2021 Zhihan Xiong
Ruoqi Shen
Simon S. Du
+ Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions 2021 Yin Tat Lee
Ruoqi Shen
Kevin Tian
+ Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev 2021 Sinho Chewi
Murat A. Erdogdu
Mufan Bill Li
Ruoqi Shen
Matthew Zhang
+ Near-Optimal Randomized Exploration for Tabular Markov Decision Processes 2021 Zhihan Xiong
Ruoqi Shen
Qiwen Cui
Maryam Fazel
Simon S. Du
+ Structured Logconcave Sampling with a Restricted Gaussian Oracle 2020 Yin Tat Lee
Ruoqi Shen
Kevin Tian
+ PDF Chat Generalized Leverage Score Sampling for Neural Networks 2020 Jason D. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
+ When is Particle Filtering Efficient for POMDP Sequential Planning 2020 Simon S. Du
Wei Hu
Zhiyuan Li
Ruoqi Shen
Zhao Song
Jia-Jun Wu
+ Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo 2020 Yin Tat Lee
Ruoqi Shen
Kevin Tian
+ Composite Logconcave Sampling with a Restricted Gaussian Oracle 2020 Ruoqi Shen
Kevin Tian
Yin Tat Lee
+ Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo 2020 Yin Tat Lee
Ruoqi Shen
Kevin Tian
+ Generalized Leverage Score Sampling for Neural Networks 2020 Jason Dean Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Yu Zheng
+ Structured Logconcave Sampling with a Restricted Gaussian Oracle 2020 Yin Tat Lee
Ruoqi Shen
Kevin Tian
+ When is Particle Filtering Efficient for Planning in Partially Observed Linear Dynamical Systems? 2020 Simon S. Du
Wei Hu
Zhiyuan Li
Ruoqi Shen
Zhao Song
Jia-Jun Wu
+ The Randomized Midpoint Method for Log-Concave Sampling 2019 Ruoqi Shen
Yin Tat Lee
+ The Randomized Midpoint Method for Log-Concave Sampling 2019 Ruoqi Shen
Yin Tat Lee
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ On sampling from a log-concave density using kinetic Langevin diffusions 2018 Arnak S. Dalalyan
Lionel Riou-Durand
4
+ PDF Chat High-dimensional Bayesian inference via the unadjusted Langevin algorithm 2019 Alain Durmus
Éric Moulines
4
+ Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities. 2018 Yin Tat Lee
Zhao Song
Santosh Vempala
4
+ Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions 2019 Zongchen Chen
Santosh Vempala
3
+ High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm 2021 Wenlong Mou
Yi-An Ma
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
3
+ Spatial Point Processes 2011 Mark Huber
3
+ PDF Chat Proximal Markov chain Monte Carlo algorithms 2015 Marcelo Pereyra
3
+ Analysis of Langevin Monte Carlo via Convex Optimization 2019 Alain Durmus
Szymon Majewski
BĹ‚aĹĽej Miasojedow
3
+ Underdamped Langevin MCMC: A non-asymptotic analysis 2017 Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
3
+ Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients 2020 Yuansi Chen
Raaz Dwivedi
Martin J. Wainwright
Bin Yu
3
+ Hit-and-Run from a Corner 2006 László Lovász
Santosh Vempala
3
+ Fast Algorithms for Logconcave Functions: Sampling, Rounding, Integration and Optimization 2006 László Lovász
Santosh Vempala
2
+ Analysis and Geometry of Markov Diffusion Operators 2013 Dominique Bakry
Ivan Gentil
Michel Ledoux
2
+ REGAL: A Regularization based Algorithm for Reinforcement Learning in Weakly Communicating MDPs 2012 Peter L. Bartlett
Ambuj Tewari
2
+ $Q$-learning with Logarithmic Regret 2020 Kunhe Yang
Lin F. Yang
Simon S. Du
2
+ Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample Complexity 2020 Zihan Zhang
Yuan Zhou
Xiangyang Ji
2
+ Is Reinforcement Learning More Difficult Than Bandits? A Near-optimal Algorithm Escaping the Curse of Horizon 2020 Zihan Zhang
Xiangyang Ji
Simon S. Du
2
+ Langevin Monte Carlo and JKO splitting. 2018 Espen Bernton
2
+ PDF Chat Sampling from a Log-Concave Distribution with Projected Langevin Monte Carlo 2018 SĂ©bastien Bubeck
Ronen Eldan
Joseph Lehec
2
+ Worst-Case Regret Bounds for Exploration via Randomized Value Functions 2019 Daniel Russo
2
+ Mirrored Langevin Dynamics 2018 Ya-Ping Hsieh
Ali Kavis
Paul Rolland
Volkan Cevher
2
+ The Randomized Midpoint Method for Log-Concave Sampling 2019 Ruoqi Shen
Yin Tat Lee
2
+ Almost Optimal Model-Free Reinforcement Learning via Reference-Advantage Decomposition 2020 Zihan Zhang
Yuan Zhou
Xiangyang Ji
2
+ Is Long Horizon Reinforcement Learning More Difficult Than Short Horizon Reinforcement Learning? 2020 Ruosong Wang
Simon S. Du
Lin F. Yang
Sham M. Kakade
2
+ Q-learning with UCB Exploration is Sample Efficient for Infinite-Horizon MDP 2019 Kefan Dong
Yuanhao Wang
Xiaoyu Chen
Liwei Wang
2
+ On Optimism in Model-Based Reinforcement Learning. 2020 Aldo Pacchiano
Philip Ball
Jack Parker-Holder
Krzysztof Choromański
Stephen Roberts
2
+ Why is Posterior Sampling Better than Optimism for Reinforcement Learning? 2016 Ian Osband
Benjamin Van Roy
2
+ An Efficient Sampling Algorithm for Non-smooth Composite Potentials 2019 Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
2
+ Log-concave sampling: Metropolis-Hastings algorithms are fast 2018 Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
2
+ MOTS: Minimax Optimal Thompson Sampling 2020 Tianyuan Jin
Pan Xu
J. Y. Shi
Xiaokui Xiao
Quanquan Gu
2
+ Random walks in a convex body and an improved volume algorithm 1993 László Lovász
MiklĂłs Simonovits
2
+ Simulated annealing in convex bodies and an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> volume algorithm 2005 László Lovász
Santosh Vempala
2
+ PDF Chat Blocking Conductance and Mixing in Random Walks 2006 Ravi Kannan
László Lovász
Ravi Montenegro
2
+ PDF Chat PAC Bounds for Discounted MDPs 2012 Tor Lattimore
Marcus HĂĽtter
2
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
2
+ A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems 2009 Amir Beck
Marc Teboulle
2
+ Solving convex programs by random walks 2004 Dimitris Bertsimas
Santosh Vempala
2
+ Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions 2017 Oren Mangoubi
Aaron Smith
2
+ PDF Chat Prior-free and prior-dependent regret bounds for Thompson Sampling 2014 SĂ©bastien Bubeck
Che-Yu Liu
2
+ Exploration by Random Network Distillation. 2018 Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
2
+ Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry 2019 Andre Wibisono
2
+ PDF Chat A random polynomial-time algorithm for approximating the volume of convex bodies 1991 Martin Dyer
Alan Frieze
Ravi Kannan
2
+ PDF Chat Bayesian Reasoning and Machine Learning 2012 David Barber
2
+ User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient 2019 Arnak S. Dalalyan
Avetik Karagulyan
2
+ Coercive Inequalities for Gibbs Measures 1999 Lorenzo Bertini
Bogusław Zegarliński
1
+ PDF Chat Approximation of zonoids by zonotopes 1989 Jean Bourgain
Joram Lindenstrauss
Vitali Milman
1
+ On the role of interaction in sequential Monte Carlo algorithms 2015 Nick Whiteley
Anthony Lee
Kari Heine
1
+ PDF Chat Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities 2005 François Bolley
CĂ©dric Villani
1
+ Geometric Random Walks: a Survey 2007 Santosh Vempala
1
+ PDF Chat Sparse regression learning by aggregation and Langevin Monte-Carlo 2012 Arnak S. Dalalyan
A. B. Tsybakov
1