High-dimensional Bayesian inference via the unadjusted Langevin algorithm
High-dimensional Bayesian inference via the unadjusted Langevin algorithm
We consider in this paper the problem of sampling a high-dimensional probability distribution $\pi$ having a density w.r.t. the Lebesgue measure on $\mathbb{R}^{d}$, known up to a normalization constant $x\mapsto\pi(x)=\mathrm{e}^{-U(x)}/\int_{\mathbb{R}^{d}}\mathrm{e}^{-U(y)}\,\mathrm{d}y$. Such problem naturally occurs for example in Bayesian inference and machine learning. Under the assumption that $U$ is continuously differentiable, …