Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Karol Kurach
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Investigating object compositionality in Generative Adversarial Networks
2020
Sjoerd van Steenkiste
Karol Kurach
Jürgen Schmidhuber
Sylvain Gelly
+
PDF
Chat
Google Research Football: A Novel Reinforcement Learning Environment
2020
Karol Kurach
Anton Raichuk
Piotr Stańczyk
Michał Zając
Olivier Bachem
Lasse Espeholt
Carlos Riquelme
Damien Vincent
Marcin Michalski
Olivier Bousquet
+
PDF
Chat
Adversarial autoencoders for compact representations of 3D point clouds
2020
Maciej Zamorski
Maciej Zięba
Piotr Klukowski
Rafał Nowak
Karol Kurach
Wojciech Stokowiec
T. P. Trzcinski
+
Google Research Football: A Novel Reinforcement Learning Environment
2019
Karol Kurach
Anton Raichuk
Piotr Stańczyk
Michał Zając
Olivier Bachem
Lasse Espeholt
Carlos Riquelme
Damien Vincent
Marcin Michalski
Olivier Bousquet
+
Google Research Football: A Novel Reinforcement Learning Environment
2019
Karol Kurach
Anton Raichuk
Piotr Stańczyk
Michał Zając
Olivier Bachem
Lasse Espeholt
Carlos Riquelme
Damien Vincent
Marcin Michalski
Olivier Bousquet
+
Towards Accurate Generative Models of Video: A New Metric & Challenges
2018
Thomas Unterthiner
Sjoerd van Steenkiste
Karol Kurach
Raphaël Marinier
Marcin Michalski
Sylvain Gelly
+
A Large-Scale Study on Regularization and Normalization in GANs
2018
Karol Kurach
Mario Lučić
Xiaohua Zhai
Marcin Michalski
Sylvain Gelly
+
The GAN Landscape: Losses, Architectures, Regularization, and Normalization
2018
Karol Kurach
Mario Lučić
Xiaohua Zhai
Marcin Michalski
Sylvain Gelly
+
MemGEN: Memory is All You Need.
2018
Sylvain Gelly
Karol Kurach
Marcin Michalski
Xiaohua Zhai
+
Adversarial Autoencoders for Compact Representations of 3D Point Clouds
2018
Maciej Zamorski
Maciej Zięba
Piotr Klukowski
Rafał Nowak
Karol Kurach
Wojciech Stokowiec
T. P. Trzcinski
+
A Large-Scale Study on Regularization and Normalization in GANs
2018
Karol Kurach
Mario Lučić
Xiaohua Zhai
Marcin Michalski
Sylvain Gelly
+
MemGEN: Memory is All You Need
2018
Sylvain Gelly
Karol Kurach
Marcin Michalski
Xiaohua Zhai
+
Towards Accurate Generative Models of Video: A New Metric & Challenges
2018
Thomas Unterthiner
Sjoerd van Steenkiste
Karol Kurach
Raphaël Marinier
Marcin Michalski
Sylvain Gelly
+
Are GANs Created Equal? A Large-Scale Study
2017
Mario Lučić
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
+
Better Text Understanding Through Image-To-Text Transfer
2017
Karol Kurach
Sylvain Gelly
Michał Jastrzębski
Philip Haeusser
Olivier Teytaud
Damien Vincent
Olivier Bousquet
+
Toward Optimal Run Racing: Application to Deep Learning Calibration
2017
Olivier Bousquet
Sylvain Gelly
Karol Kurach
Marc Schoenauer
Michèle Sébag
Olivier Teytaud
Damien Vincent
+
Critical Hyper-Parameters: No Random, No Cry
2017
Olivier Bousquet
Sylvain Gelly
Karol Kurach
Olivier Teytaud
Damien Vincent
+
Are GANs Created Equal? A Large-Scale Study
2017
Mario Lučić
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
+
Learning Efficient Algorithms with Hierarchical Attentive Memory
2016
Marcin Andrychowicz
Karol Kurach
+
Smart Reply: Automated Response Suggestion for Email
2016
Anjuli Kannan
Karol Kurach
Sujith Ravi
Tobias Kaufmann
Andrew Tomkins
Miklós Bálint
Greg S. Corrado
Lukács László
Marina Ganea
Peter Young
+
Adding Gradient Noise Improves Learning for Very Deep Networks
2015
Arvind Neelakantan
Luke Vilnis
Quoc V. Le
Ilya Sutskever
Łukasz Kaiser
Karol Kurach
James Martens
+
Neural Random-Access Machines
2015
Karol Kurach
Marcin Andrychowicz
Ilya Sutskever
+
Adding Gradient Noise Improves Learning for Very Deep Networks
2015
Arvind Neelakantan
Luke Vilnis
Quoc V. Le
Ilya Sutskever
Łukasz Kaiser
Karol Kurach
James Martens
+
Neural Random-Access Machines
2015
Karol Kurach
Marcin Andrychowicz
Ilya Sutskever
+
Learning to Discover Efficient Mathematical Identities
2014
Wojciech Zaremba
Karol Kurach
Rob Fergus
+
Learning to Discover Efficient Mathematical Identities
2014
Wojciech Zaremba
Karol Kurach
Rob Fergus
Common Coauthors
Coauthor
Papers Together
Sylvain Gelly
16
Marcin Michalski
12
Olivier Bousquet
8
Damien Vincent
6
Mario Lučić
5
Xiaohua Zhai
5
Ilya Sutskever
4
Sjoerd van Steenkiste
3
Lasse Espeholt
3
Piotr Stańczyk
3
Anton Raichuk
3
Michał Zając
3
Olivier Teytaud
3
Olivier Bachem
3
Marcin Andrychowicz
3
Łukasz Kaiser
2
Raphaël Marinier
2
Arvind Neelakantan
2
Luke Vilnis
2
Maciej Zamorski
2
Wojciech Stokowiec
2
Tomasz Trzciński
2
Wojciech Zaremba
2
Thomas Unterthiner
2
Maciej Zięba
2
Quoc V. Le
2
Rob Fergus
2
James Martens
2
Carlos Riquelme
2
Piotr Klukowski
2
Miklós Bálint
1
Anjuli Kannan
1
Philip Haeusser
1
Rafał Nowak
1
Rafał Nowak
1
Marc Schoenauer
1
Marina Ganea
1
Carlos Riquelme
1
Sujith Ravi
1
Michał Jastrzębski
1
Lukács László
1
Tobias Kaufmann
1
Vivek Ramavajjala
1
Andrew Tomkins
1
Greg S. Corrado
1
Peter Young
1
Jürgen Schmidhuber
1
Michèle Sébag
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Are GANs Created Equal? A Large-Scale Study
2017
Mario Lučić
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
4
+
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
2015
Alec Radford
Luke Metz
Soumith Chintala
4
+
Large Scale GAN Training for High Fidelity Natural Image Synthesis
2018
Andrew Brock
Jeff Donahue
Karen Simonyan
3
+
Neural Machine Translation by Jointly Learning to Align and Translate
2015
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
3
+
End-To-End Memory Networks
2015
Sainbayar Sukhbaatar
Arthur Szlam
Jason Weston
Rob Fergus
3
+
StarCraft II: A New Challenge for Reinforcement Learning
2017
Oriol Vinyals
Timo Ewalds
Sergey Bartunov
Petko Georgiev
Alexander Sasha Vezhnevets
Michelle Yeo
Alireza Makhzani
Heinrich Küttler
John Agapiou
Julian Schrittwieser
3
+
Neural Turing Machines
2014
Alex Graves
Greg Wayne
Ivo Danihelka
3
+
PDF
Chat
Show and tell: A neural image caption generator
2015
Oriol Vinyals
Alexander Toshev
Samy Bengio
Dumitru Erhan
3
+
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
2017
Martin Heusel
Hubert Ramsauer
Thomas Unterthiner
Bernhard Nessler
Sepp Hochreiter
3
+
Spectral Normalization for Generative Adversarial Networks
2018
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
3
+
Adam: A Method for Stochastic Optimization
2014
Diederik P. Kingma
Jimmy Ba
3
+
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
2015
Fisher Yu
Yinda Zhang
Shuran Song
Ari Seff
Jianxiong Xiao
2
+
Neural GPUs Learn Algorithms
2015
Łukasz Kaiser
Ilya Sutskever
2
+
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
2015
Alec Radford
Luke Metz
Soumith Chintala
2
+
Improving neural networks by preventing co-adaptation of feature detectors
2012
Geoffrey E. Hinton
Nitish Srivastava
Alex Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
2
+
PDF
Chat
Rethinking the Inception Architecture for Computer Vision
2016
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
2
+
PDF
Chat
The Arcade Learning Environment: An Evaluation Platform for General Agents
2013
Marc G. Bellemare
Yavar Naddaf
Joel Veness
Michael Bowling
2
+
PDF
Chat
Image-to-Image Translation with Conditional Adversarial Networks
2017
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
2
+
Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets
2015
Armand Joulin
Tomáš Mikolov
2
+
The Hanabi challenge: A new frontier for AI research
2019
Nolan Bard
Jakob Foerster
Sarath Chandar
Neil Burch
Marc Lanctot
Hai-Jing Song
Emilio Parisotto
Vincent Dumoulin
Subhodeep Moitra
Edward Hughes
2
+
Church: a language for generative models
2012
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
Joshua B. Tenenbaum
2
+
PDF
Chat
A Style-Based Generator Architecture for Generative Adversarial Networks
2019
Tero Karras
Samuli Laine
Timo Aila
2
+
Sequence to Sequence Learning with Neural Networks
2014
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
2
+
PDF
Chat
Pros and cons of GAN evaluation measures
2018
Ali Borji
2
+
Self-Supervised Generative Adversarial Networks
2018
Ting Chen
Xiaohua Zhai
Marvin Ritter
Mario Lučić
Neil Houlsby
2
+
Self-Attention Generative Adversarial Networks
2018
Han Zhang
Ian Goodfellow
Dimitris Metaxas
Augustus Odena
2
+
Generative Adversarial Self-Imitation Learning
2018
Junhyuk Oh
Yijie Guo
Satinder Singh
Honglak Lee
2
+
PDF
Chat
Least Squares Generative Adversarial Networks
2017
Xudong Mao
Qing Li
Haoran Xie
Raymond Y.K. Lau
Zhen Wang
Stephen Paul Smolley
2
+
Can recursive neural tensor networks learn logical reasoning
2013
Samuel R. Bowman
2
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+
cuDNN: Efficient Primitives for Deep Learning
2014
Sharan Chetlur
Cliff Woolley
Philippe Vandermersch
Jonathan Cohen
John Tran
Bryan Catanzaro
Evan Shelhamer
2
+
Reinforcement Learning Neural Turing Machines - Revised
2015
Wojciech Zaremba
Ilya Sutskever
2
+
On Convergence and Stability of GANs
2018
Naveen Kodali
James Hays
Jacob Abernethy
Zsolt Kira
2
+
Proximal Policy Optimization Algorithms
2017
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
2
+
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
2013
Andrew Saxe
James L. McClelland
Surya Ganguli
2
+
DeepMind Control Suite
2018
Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
Diego de Las Casas
David Budden
Abbas Abdolmaleki
Josh Merel
Andrew Lefrancq
2
+
Grid Long Short-Term Memory
2015
Nal Kalchbrenner
Ivo Danihelka
Alex Graves
2
+
Soft Actor-Critic Algorithms and Applications
2018
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
Jie Tan
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
2
+
Learning to Execute
2014
Wojciech Zaremba
Ilya Sutskever
2
+
ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst
2019
Mayank Bansal
Alex Krizhevsky
Abhijit S. Ogale
2
+
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
2015
Sergey Ioffe
Christian Szegedy
2
+
PDF
Chat
Representation Learning: A Review and New Perspectives
2013
Yoshua Bengio
Aaron Courville
P. M. Durai Raj Vincent
2
+
PDF
Chat
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents
2018
Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
Joel Veness
Matthew Hausknecht
Michael Bowling
2
+
PDF
Chat
An informational approach to the global optimization of expensive-to-evaluate functions
2008
Julien Villemonteix
Emmanuel Vázquez
Éric Walter
1
+
On the use of low discrepancy sequences in Monte Carlo methods
1996
Bruno Tuffin
1
+
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
2014
Jun‐Young Chung
Çaǧlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
1
+
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
2014
Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
1
+
PDF
Chat
Multi-view Convolutional Neural Networks for 3D Shape Recognition
2015
Hang Su
Subhransu Maji
Evangelos Kalogerakis
Erik Learned-Miller
1
+
Video (language) modeling: a baseline for generative models of natural videos.
2014
Marc’Aurelio Ranzato
Arthur Szlam
Joan Bruna
Michaël Mathieu
Ronan Collobert
Sumit Chopra
1
+
PDF
Chat
Deep visual-semantic alignments for generating image descriptions
2015
Andrej Karpathy
Li Fei-Fei
1