Author Description

Login to generate an author description

Ask a Question About This Mathematician

All published works (25)

Action Title Date Authors
+
On algebraic sums, trees and ideals in the Baire space 2025-02-24 Ɓukasz Mazurkiewicz Marcin Michalski Robert RaƂowski Szymon Ć»eberski
On algebraic sums, trees and ideals in the Baire space 2024-09-26 Ɓukasz Mazurkiewicz Marcin Michalski Robert RaƂowski Szymon Ć»eberski
On algebraic sums, trees and ideals in the Cantor space 2024-05-22 Marcin Michalski Robert RaƂowski Szymon Ć»eberski
Around Eggleston Theorem 2023-01-01 Marcin Michalski Robert RaƂowski Szymon Ć»eberski
Ideals with Smital properties 2021-01-01 Marcin Michalski Robert RaƂowski Szymon Ć»eberski
Google Research Football: A Novel Reinforcement Learning Environment 2020-04-03 Karol Kurach Anton Raichuk Piotr StaƄczyk MichaƂ Zając Olivier Bachem Lasse Espeholt Carlos Riquelme Damien Vincent Marcin Michalski Olivier Bousquet
What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study 2020-01-01 Marcin Andrychowicz Anton Raichuk Piotr StaƄczyk Manu Orsini Sertan Girgin RaphaĂ«l Marinier LĂ©onard Hussenot Matthieu Geist Olivier Pietquin Marcin Michalski
+
SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference 2019-10-15 Lasse Espeholt RaphaĂ«l Marinier Piotr StaƄczyk Ke Wang Marcin Michalski
The Visual Task Adaptation Benchmark 2019-09-25 Xiaohua Zhai Joan Puigcerver Alexander Kolesnikov Pierre Ruyssen Carlos Riquelme Mario Lučić Josip Djolonga AndrĂ© Susano Pinto Maxim Neumann Alexey Dosovitskiy
+
Google Research Football: A Novel Reinforcement Learning Environment 2019-07-25 Karol Kurach Anton Raichuk Piotr StaƄczyk MichaƂ Zając Olivier Bachem Lasse Espeholt Carlos Riquelme Damien Vincent Marcin Michalski Olivier Bousquet
SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference 2019-01-01 Lasse Espeholt RaphaĂ«l Marinier Piotr StaƄczyk Ke Wang Marcin Michalski
A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark 2019-01-01 Xiaohua Zhai Joan Puigcerver Alexander Kolesnikov Pierre Ruyssen Carlos Riquelme Mario Lučić Josip Djolonga AndrĂ© Susano Pinto Maxim Neumann Alexey Dosovitskiy
Mycielski among trees 2019-01-01 Marcin Michalski Robert RaƂowski Szymon Ć»eberski
A note on sets avoiding rational distances 2019-01-01 Marcin Michalski
Google Research Football: A Novel Reinforcement Learning Environment 2019-01-01 Karol Kurach Anton Raichuk Piotr StaƄczyk MichaƂ Zając Olivier Bachem Lasse Espeholt Carlos Riquelme Damien Vincent Marcin Michalski Olivier Bousquet
Towards Accurate Generative Models of Video: A New Metric & Challenges 2018-12-03 Thomas Unterthiner Sjoerd van Steenkiste Karol Kurach Raphaël Marinier Marcin Michalski Sylvain Gelly
+
A Large-Scale Study on Regularization and Normalization in GANs 2018-07-12 Karol Kurach Mario Lučić Xiaohua Zhai Marcin Michalski Sylvain Gelly
The GAN Landscape: Losses, Architectures, Regularization, and Normalization 2018-06-05 Karol Kurach Mario Lučić Xiaohua Zhai Marcin Michalski Sylvain Gelly
MemGEN: Memory is All You Need. 2018-03-29 Sylvain Gelly Karol Kurach Marcin Michalski Xiaohua Zhai
A Large-Scale Study on Regularization and Normalization in GANs 2018-01-01 Karol Kurach Mario Lučić Xiaohua Zhai Marcin Michalski Sylvain Gelly
MemGEN: Memory is All You Need 2018-01-01 Sylvain Gelly Karol Kurach Marcin Michalski Xiaohua Zhai
Towards Accurate Generative Models of Video: A New Metric & Challenges 2018-01-01 Thomas Unterthiner Sjoerd van Steenkiste Karol Kurach Raphaël Marinier Marcin Michalski Sylvain Gelly
Are GANs Created Equal? A Large-Scale Study 2017-11-28 Mario Lučić Karol Kurach Marcin Michalski Sylvain Gelly Olivier Bousquet
Are GANs Created Equal? A Large-Scale Study 2017-01-01 Mario Lučić Karol Kurach Marcin Michalski Sylvain Gelly Olivier Bousquet
Faster Than Light Communication 1999-01-01 Marcin Michalski

Commonly Cited References

Action Title Date Authors # of times referenced
StarCraft II: A New Challenge for Reinforcement Learning 2017-01-01 Oriol Vinyals Timo Ewalds Sergey Bartunov Petko Georgiev Alexander Sasha Vezhnevets Michelle Yeo Alireza Makhzani Heinrich KĂŒttler John Agapiou Julian Schrittwieser 5
Large Scale GAN Training for High Fidelity Natural Image Synthesis 2018-01-01 Andrew Brock Jeff Donahue Karen Simonyan 4
The Arcade Learning Environment: An Evaluation Platform for General Agents 2013-06-14 Marc G. Bellemare Yavar Naddaf Joel Veness Michael Bowling 4
Adam: A Method for Stochastic Optimization 2014-01-01 Diederik P. Kingma Jimmy Ba 4
Proximal Policy Optimization Algorithms 2017-01-01 John Schulman Filip Wolski Prafulla Dhariwal Alec Radford Oleg Klimov 3
Are GANs Created Equal? A Large-Scale Study 2017-01-01 Mario Lučić Karol Kurach Marcin Michalski Sylvain Gelly Olivier Bousquet 3
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 2015-01-01 Alec Radford Luke Metz Soumith Chintala 3
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium 2017-01-01 Martin Heusel Hubert Ramsauer Thomas Unterthiner Bernhard Nessler Sepp Hochreiter 3
Rainbow: Combining Improvements in Deep Reinforcement Learning 2018-04-29 Matteo Hessel Joseph Modayil Hado van Hasselt Tom Schaul Georg Ostrovski Will Dabney Dan Horgan Bilal Piot Mohammad Gheshlaghi Azar David Silver 3
Soft Actor-Critic Algorithms and Applications 2018-01-01 Tuomas Haarnoja Aurick Zhou Kristian Hartikainen George Tucker Sehoon Ha Jie Tan Vikash Kumar Henry Zhu Abhishek Gupta Pieter Abbeel 3
Asynchronous Methods for Deep Reinforcement Learning 2016-01-01 Volodymyr Mnih AdriĂ  PuigdomĂšnech Badia Mehdi Mirza Alex Graves Tim Harley Timothy Lillicrap David Silver Koray Kavukcuoglu 2
GPU-Accelerated Atari Emulation for Reinforcement Learning 2019-07-19 Steven Dalton Iuri Frosio Michael Garland 2
Least Squares Generative Adversarial Networks 2017-10-01 Xudong Mao Qing Li Haoran Xie Raymond Y.K. Lau Zhen Wang Stephen Paul Smolley 2
TorchBeast: A PyTorch Platform for Distributed RL 2019-01-01 Heinrich KĂŒttler Nantas Nardelli Thibaut Lavril Marco Selvatici Viswanath Sivakumar Tim RocktĂ€schel Edward Grefenstette 2
On Convergence and Stability of GANs 2018-02-15 Naveen Kodali James Hays Jacob Abernethy Zsolt Kira 2
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents 2018-03-19 Marlos C. Machado Marc G. Bellemare Erik Talvitie Joel Veness Matthew Hausknecht Michael Bowling 2
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop 2015-01-01 Fisher Yu Yinda Zhang Shuran Song Ari Seff Jianxiong Xiao 2
A Style-Based Generator Architecture for Generative Adversarial Networks 2019-06-01 Tero Karras Samuli Laine Timo Aila 2
ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst 2019-06-22 Mayank Bansal Alex Krizhevsky Abhijit S. Ogale 2
cuDNN: Efficient Primitives for Deep Learning 2014-10-03 Sharan Chetlur Cliff Woolley Philippe Vandermersch Jonathan Cohen John Tran Bryan Catanzaro Evan Shelhamer 2
Neural Replicator Dynamics 2019-01-01 Shayegan Omidshafiei Daniel Hennes Dustin Morrill Rémi Munos Julien Pérolat Marc Lanctot Audrƫnas Gruslys Jean-Baptiste Lespiau Karl Tuyls 2
Fast Task Inference with Variational Intrinsic Successor Features 2019-06-12 Steven Hansen Will Dabney André Barreto Tom Van de Wiele David Warde-Farley Volodymyr Mnih 2
Improved Techniques for Training GANs 2016-01-01 Tim Salimans Ian Goodfellow Wojciech Zaremba Vicki Cheung Alec Radford Xi Chen 2
Prioritized Experience Replay 2015-01-01 Tom Schaul John Quan Ioannis Antonoglou David Silver 2
Spectral Normalization for Generative Adversarial Networks 2018-02-15 Takeru Miyato Toshiki Kataoka Masanori Koyama Yuichi Yoshida 2
The Hanabi challenge: A new frontier for AI research 2019-11-27 Nolan Bard Jakob Foerster Sarath Chandar Neil Burch Marc Lanctot Hai-Jing Song Emilio Parisotto Vincent Dumoulin Subhodeep Moitra Edward Hughes 2
Pros and cons of GAN evaluation measures 2018-11-27 Ali Borji 2
Generative Adversarial Self-Imitation Learning 2018-01-01 Junhyuk Oh Yijie Guo Satinder Singh Honglak Lee 2
Evolution Strategies as a Scalable Alternative to Reinforcement Learning 2017-01-01 Tim Salimans Jonathan Ho Xi Chen Ilya Sutskever 2
rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch. 2019-09-03 Adam Stooke Pieter Abbeel 2
Multi-Task Deep Reinforcement Learning with PopArt 2019-07-17 Matteo Hessel Hubert Soyer Lasse Espeholt Wojciech Marian Czarnecki Simon Schmitt Hado van Hasselt 2
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations 2018-01-01 Francesco Locatello Stefan Bauer Mario Lučić Gunnar RĂ€tsch Sylvain Gelly Bernhard Schölkopf Olivier Bachem 2
Self-Attention Generative Adversarial Networks 2018-01-01 Han Zhang Ian Goodfellow Dimitris Metaxas Augustus Odena 2
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour 2017-01-01 Priya Goyal Piotr DollĂĄr Ross Girshick Pieter Noordhuis Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He 2
Observe and Look Further: Achieving Consistent Performance on Atari 2018-01-01 Tobias Pohlen Bilal Piot Todd Hester Mohammad Gheshlaghi Azar Dan Horgan David Budden Gabriel Barth-Maron Hado van Hasselt John Quan Mel VecerĂ­k 2
DeepMind Control Suite 2018-01-01 Yuval Tassa Yotam Doron Alistair Muldal Tom Erez Yazhe Li Diego de Las Casas David Budden Abbas Abdolmaleki Josh Merel Andrew Lefrancq 2
Deep Residual Learning for Image Recognition 2016-06-01 Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun 2
Self-Supervised Generative Adversarial Networks 2018-11-27 Ting Chen Xiaohua Zhai Marvin Ritter Mario Lučić Neil Houlsby 2
Massively Parallel Methods for Deep Reinforcement Learning 2015-01-01 Arun Sukumaran Nair P. Srinivasan Sam Blackwell Cagdas Alcicek Rory Fearon Alessandro De Maria Vedavyas Panneershelvam Mustafa Suleyman Charles Beattie Stig Petersen 2
Scaling SGD Batch Size to 32K for ImageNet Training. 2017-08-13 Yang You Igor Gitman Boris Ginsburg 2
Accelerated Methods for Deep Reinforcement Learning 2018-01-01 Adam Stooke Pieter Abbeel 2
Large Batch Training of Convolutional Networks 2017-01-01 Yang You Igor Gitman Boris Ginsburg 2
+
Representation Learning with Contrastive Predictive Coding 2018-07-10 AĂ€ron van den Oord Yazhe Li Oriol Vinyals 2
+
Exploiting Hierarchy for Learning and Transfer in KL-regularized RL 2019-03-18 Dhruva Tirumala Hyeonwoo Noh Alexandre Galashov Leonard Hasenclever Arun Ahuja Greg Wayne Razvan Pascanu Yee Whye Teh Nicolas Heess 2
Revisiting Distributed Synchronous SGD 2017-01-01 Jianmin Chen Rajat Monga Samy Bengio RafaƂ Józefowicz 2
+
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015-02-11 Sergey Ioffe Christian Szegedy 2
An Empirical Model of Large-Batch Training 2018-01-01 Sam McCandlish Jared Kaplan Dario Amodei OpenAI Dota Team 2
+
Google Research Football: A Novel Reinforcement Learning Environment 2019-07-25 Karol Kurach Anton Raichuk Piotr StaƄczyk MichaƂ Zając Olivier Bachem Lasse Espeholt Carlos Riquelme Damien Vincent Marcin Michalski Olivier Bousquet 2
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning 2017-01-01 Felipe Petroski Such Vashisht Madhavan Edoardo Conti Joel Lehman Kenneth O. Stanley Jeff Clune 2
Stopping GAN Violence: Generative Unadversarial Networks 2017-03-07 Samuel Albanie Sébastien Ehrhardt João F. Henriques 1