+
PDF
Chat
|
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
|
2023
|
Peter Eastman
Raimondas Galvelis
RaĂșl P. PelĂĄez
Charlles R. A. Abreu
Stephen E. Farr
Emilio Gallicchio
Anton Gorenko
Michael M. Henry
Frank Hu
Jing Huang
|
+
PDF
Chat
|
Folding@home: Achievements from over 20 years of citizen science herald the exascale era
|
2023
|
Vincent A. Voelz
Vijay S. Pande
Gregory R. Bowman
|
+
|
Folding@home: achievements from over twenty years of citizen science herald the exascale era
|
2023
|
Vincent A. Voelz
Vijay S. Pande
Gregory R. Bowman
|
+
|
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
|
2023
|
Peter Eastman
Raimondas Galvelis
RaĂșl P. PelĂĄez
Charlles R. A. Abreu
Stephen E. Farr
Emilio Gallicchio
Anton Gorenko
Michael M. Henry
Frank Hu
Jing Huang
|
+
|
Classical Quantum Optimization with Neural Network Quantum States.
|
2019
|
Joseph Gomes
Keri A. McKiernan
Peter Eastman
Vijay S. Pande
|
+
|
Physical machine learning outperforms "human learning" in Quantum Chemistry
|
2019
|
Anton V. Sinitskiy
Vijay S. Pande
|
+
|
Predicting Gene Expression Between Species with Neural Networks
|
2019
|
Peter Eastman
Vijay S. Pande
|
+
|
Pre-training Graph Neural Networks.
|
2019
|
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Ćœitnik
Percy Liang
Vijay S. Pande
Jure Leskovec
|
+
|
Predicting Toxicity from Gene Expression with Neural Networks
|
2019
|
Peter Eastman
Vijay S. Pande
|
+
|
Step Change Improvement in ADMET Prediction with PotentialNet Deep Featurization
|
2019
|
Evan N. Feinberg
Robert P. Sheridan
Elizabeth Joshi
Vijay S. Pande
Alan C. Cheng
|
+
|
Strategies for Pre-training Graph Neural Networks
|
2019
|
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Ćœitnik
Percy Liang
Vijay S. Pande
Jure Leskovec
|
+
|
Physical machine learning outperforms "human learning" in Quantum Chemistry
|
2019
|
Anton V. Sinitskiy
Vijay S. Pande
|
+
|
Predicting Gene Expression Between Species with Neural Networks
|
2019
|
Peter Eastman
Vijay S. Pande
|
+
|
Predicting Toxicity from Gene Expression with Neural Networks
|
2019
|
Peter Eastman
Vijay S. Pande
|
+
PDF
Chat
|
Note: Variational encoding of protein dynamics benefits from maximizing latent autocorrelation
|
2018
|
Hannah K. Wayment-Steele
Vijay S. Pande
|
+
|
PotentialNet for Molecular Property Prediction
|
2018
|
Evan N. Feinberg
Debnil Sur
Zhenqin Wu
Brooke E. Husic
Huanghao Mai
Yang Li
Saisai Sun
Jianyi Yang
Bharath Ramsundar
Vijay S. Pande
|
+
PDF
Chat
|
Automated design of collective variables using supervised machine learning
|
2018
|
Mohammad M. Sultan
Vijay S. Pande
|
+
|
Weakly-Supervised Deep Learning of Heat Transport via Physics Informed Loss
|
2018
|
Rishi Sharma
Amir Barati Farimani
Joe Gomes
Peter Eastman
Vijay S. Pande
|
+
PDF
Chat
|
Variational encoding of complex dynamics
|
2018
|
Carlos X. HernĂĄndez
Hannah K. Wayment-Steele
Mohammad M. Sultan
Brooke E. Husic
Vijay S. Pande
|
+
|
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
|
2018
|
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
Jure Leskovec
|
+
PDF
Chat
|
Communication: Adaptive boundaries in multiscale simulations
|
2018
|
Jason A. Wagoner
Vijay S. Pande
|
+
|
Note: Variational Encoding of Protein Dynamics Benefits from Maximizing Latent Autocorrelation
|
2018
|
Hannah K. Wayment-Steele
Vijay S. Pande
|
+
|
Machine Learning Harnesses Molecular Dynamics to Discover New $\mu$ Opioid Chemotypes
|
2018
|
Evan N. Feinberg
Amir Barati Farimani
Rajendra Uprety
Amanda Hunkele
Gavril W. Pasternak
Susruta Majumdar
Vijay S. Pande
|
+
|
Spatial Graph Convolutions for Drug Discovery
|
2018
|
Evan N. Feinberg
Debnil Sur
Brooke E. Husic
Doris Mai
Yang Li
Jianyi Yang
Bharath Ramsundar
Vijay S. Pande
|
+
|
PotentialNet for Molecular Property Prediction
|
2018
|
Evan N. Feinberg
Debnil Sur
Zhenqin Wu
Brooke E. Husic
Huanghao Mai
Yang Li
Saisai Sun
Jianyi Yang
Bharath Ramsundar
Vijay S. Pande
|
+
PDF
Chat
|
Transferable Neural Networks for Enhanced Sampling of Protein Dynamics
|
2018
|
Mohammad M. Sultan
Hannah K. Wayment-Steele
Vijay S. Pande
|
+
|
Decision functions from supervised machine learning algorithms as collective variables for accelerating molecular simulations.
|
2018
|
Mohammad M. Sultan
Vijay S. Pande
|
+
|
Automated design of collective variables using supervised machine learning.
|
2018
|
Mohammad M. Sultan
Vijay S. Pande
|
+
PDF
Chat
|
Binding Pathway of Opiates to Ό-Opioid Receptors Revealed by Machine Learning
|
2018
|
Amir Barati Farimani
Evan N. Feinberg
Vijay S. Pande
|
+
PDF
Chat
|
Theoretical restrictions on longest implicit time scales in Markov state models of biomolecular dynamics
|
2018
|
Anton V. Sinitskiy
Vijay S. Pande
|
+
|
Transferable neural networks for enhanced sampling of protein dynamics
|
2018
|
Mohammad M. Sultan
Hannah K. Wayment-Steele
Vijay S. Pande
|
+
|
Using Deep Learning for Segmentation and Counting within Microscopy Data
|
2018
|
Carlos X. HernĂĄndez
Mohammad M. Sultan
Vijay S. Pande
|
+
|
SentRNA: Improving computational RNA design by incorporating a prior of human design strategies
|
2018
|
Jade Shi
Rhiju Das
Vijay S. Pande
|
+
|
Deep Learning Phase Segregation
|
2018
|
Amir Barati Farimani
Joseph Gomes
Rishi Sharma
Franklin L. Lee
Vijay S. Pande
|
+
|
Improved Training with Curriculum GANs
|
2018
|
Rishi Sharma
Shane Barratt
Stefano Ermon
Vijay S. Pande
|
+
|
Deep Neural Network Computes Electron Densities and Energies of a Large Set of Organic Molecules Faster than Density Functional Theory (DFT)
|
2018
|
Anton V. Sinitskiy
Vijay S. Pande
|
+
|
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
|
2018
|
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
Jure Leskovec
|
+
|
Weakly-Supervised Deep Learning of Heat Transport via Physics Informed Loss
|
2018
|
Rishi Sharma
Amir Barati Farimani
Joe Gomes
Peter Eastman
Vijay S. Pande
|
+
|
Machine Learning Harnesses Molecular Dynamics to Discover New $Ό$ Opioid Chemotypes
|
2018
|
Evan N. Feinberg
Amir Barati Farimani
Rajendra Uprety
Amanda Hunkele
Gavril W. Pasternak
Susruta Majumdar
Vijay S. Pande
|
+
|
PotentialNet for Molecular Property Prediction
|
2018
|
Evan N. Feinberg
Debnil Sur
Zhenqin Wu
Brooke E. Husic
Huanghao Mai
Yang Li
Saisai Sun
Jianyi Yang
Bharath Ramsundar
Vijay S. Pande
|
+
|
Transferable neural networks for enhanced sampling of protein dynamics
|
2018
|
Mohammad M. Sultan
Hannah K. Wayment-Steele
Vijay S. Pande
|
+
|
Automated design of collective variables using supervised machine learning
|
2018
|
Mohammad M. Sultan
Vijay S. Pande
|
+
PDF
Chat
|
Note: MSM lag time cannot be used for variational model selection
|
2017
|
Brooke E. Husic
Vijay S. Pande
|
+
PDF
Chat
|
MoleculeNet: a benchmark for molecular machine learning
|
2017
|
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
|
+
|
Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models
|
2017
|
Bowen Liu
Bharath Ramsundar
Prasad Kawthekar
Jade Shi
Joseph Gomes
Quang Luu Nguyen
Stephen Ho
Jack L. Sloane
Paul A. Wender
Vijay S. Pande
|
+
PDF
Chat
|
Computationally Discovered Potentiating Role of Glycans on NMDA Receptors
|
2017
|
Anton V. Sinitskiy
Nathaniel Stanley
David H. Hackos
Jesse E. Hanson
Benjamin D. Sellers
Vijay S. Pande
|
+
|
Low Data Drug Discovery with One-Shot Learning
|
2017
|
Han Altae-Tran
Bharath Ramsundar
Aneesh Pappu
Vijay S. Pande
|
+
|
Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity
|
2017
|
Joseph Gomes
Bharath Ramsundar
Evan N. Feinberg
Vijay S. Pande
|
+
PDF
Chat
|
Identification of simple reaction coordinates from complex dynamics
|
2017
|
Robert T. McGibbon
Brooke E. Husic
Vijay S. Pande
|
+
|
Deep Learning the Physics of Transport Phenomena
|
2017
|
Amir Barati Farimani
Joseph Gomes
Vijay S. Pande
|
+
|
Unsupervised learning of dynamical and molecular similarity using variance minimization
|
2017
|
Brooke E. Husic
Vijay S. Pande
|
+
|
MoleculeNet: A Benchmark for Molecular Machine Learning
|
2017
|
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
|
+
|
Retrosynthetic reaction prediction using neural sequence-to-sequence models
|
2017
|
Bowen Liu
Bharath Ramsundar
Prasad Kawthekar
Jade Shi
Joseph Gomes
Quang Luu Nguyen
Stephen Ho
Jack L. Sloane
Paul A. Wender
Vijay S. Pande
|
+
|
Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity
|
2017
|
J. Anthony Gomes
Bharath Ramsundar
Evan N. Feinberg
Vijay S. Pande
|
+
|
Computationally Discovered Potentiating Role of Glycans on NMDA Receptors
|
2016
|
Anton V. Sinitskiy
Nathaniel Stanley
David H. Hackos
Jesse E. Hanson
Benjamin D. Sellers
Vijay S. Pande
|
+
|
Learning Protein Dynamics with Metastable Switching Systems.
|
2016
|
Bharath Ramsundar
Vijay S. Pande
|
+
PDF
Chat
|
Molecular graph convolutions: moving beyond fingerprints
|
2016
|
Steven Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick Riley
|
+
PDF
Chat
|
ROCS-derived features for virtual screening
|
2016
|
Steven Kearnes
Vijay S. Pande
|
+
|
Modeling Industrial ADMET Data with Multitask Networks
|
2016
|
Steven Kearnes
Brian Goldman
Vijay S. Pande
|
+
|
Low Data Drug Discovery with One-shot Learning
|
2016
|
Han Altae-Tran
Bharath Ramsundar
Aneesh Pappu
Vijay S. Pande
|
+
|
Modeling Industrial ADMET Data with Multitask Networks
|
2016
|
Steven Kearnes
B Goldman
Vijay S. Pande
|
+
|
Learning Protein Dynamics with Metastable Switching Systems
|
2016
|
Bharath Ramsundar
Vijay S. Pande
|
+
|
Computationally Discovered Potentiating Role of Glycans on NMDA Receptors
|
2016
|
Anton V. Sinitskiy
Nathaniel Stanley
David H. Hackos
Jesse E. Hanson
Benjamin D. Sellers
Vijay S. Pande
|
+
PDF
Chat
|
Efficient maximum likelihood parameterization of continuous-time Markov processes
|
2015
|
Robert T. McGibbon
Vijay S. Pande
|
+
PDF
Chat
|
Percolation-like phase transitions in network models of protein dynamics
|
2015
|
Jeffrey K. Weber
Vijay S. Pande
|
+
|
Efficient maximum likelihood parameterization of continuous-time Markov processes
|
2015
|
Robert T. McGibbon
Vijay S. Pande
|
+
PDF
Chat
|
Variational cross-validation of slow dynamical modes in molecular kinetics
|
2015
|
Robert T. McGibbon
Vijay S. Pande
|
+
|
Massively Multitask Networks for Drug Discovery
|
2015
|
Bharath Ramsundar
Steven Kearnes
Patrick Riley
Dale R. Webster
David E. Konerding
Vijay S. Pande
|
+
|
Efficient maximum likelihood parameterization of continuous-time Markov processes
|
2015
|
Robert T. McGibbon
Vijay S. Pande
|
+
PDF
Chat
|
Perspective: Markov models for long-timescale biomolecular dynamics
|
2014
|
Christian R. Schwantes
Robert T. McGibbon
Vijay S. Pande
|
+
|
Efficient inference of protein structural ensembles
|
2014
|
Thomas J. Lane
Christian R. Schwantes
Kyle A. Beauchamp
Vijay S. Pande
|
+
|
Understanding Protein Dynamics with L1-Regularized Reversible Hidden Markov Models
|
2014
|
Robert T. McGibbon
Bharath Ramsundar
Mohammad M. Sultan
Gert Kiss
Vijay S. Pande
|
+
PDF
Chat
|
Inferring the Rate-Length Law of Protein Folding
|
2013
|
Thomas J. Lane
Vijay S. Pande
|
+
PDF
Chat
|
Probing the origins of two-state folding
|
2013
|
Thomas J. Lane
Christian R. Schwantes
Kyle A. Beauchamp
Vijay S. Pande
|
+
PDF
Chat
|
Inclusion of persistence length-based secondary structure in replica field theoretic models of heteropolymer freezing
|
2013
|
Jeffrey K. Weber
Vijay S. Pande
|
+
PDF
Chat
|
Eigenvalues of the homogeneous finite linear one step master equation: Applications to downhill folding
|
2012
|
Thomas J. Lane
Vijay S. Pande
|
+
PDF
Chat
|
Reducing the effect of Metropolization on mixing times in molecular dynamics simulations
|
2012
|
Jason A. Wagoner
Vijay S. Pande
|
+
PDF
Chat
|
Splitting Probabilities as a Test of Reaction Coordinate Choice in Single-Molecule Experiments
|
2011
|
John D. Chodera
Vijay S. Pande
|
+
PDF
Chat
|
Rationally Designed Turn Promoting Mutation in the Amyloid-ÎČ Peptide Sequence Stabilizes Oligomers in Solution
|
2011
|
Jayakumar Rajadas
Corey W. Liu
Paul Novick
Nicholas Kelley
Mohammed Inayathullah
Melburne C. LeMieux
Vijay S. Pande
|
+
|
A robust approach to estimating rates from time-correlation functions
|
2011
|
John D. Chodera
Phillip Elms
William C. Swope
Jan-Hendrik Prinz
Susan Marqusee
Carlos Bustamante
Frank Noé
Vijay S. Pande
|
+
PDF
Chat
|
Simple Theory of Protein Folding Kinetics
|
2010
|
Vijay S. Pande
|
+
PDF
Chat
|
Hard Data on Soft Errors: A Large-Scale Assessment of Real-World Error Rates in GPGPU
|
2010
|
Imran S. Haque
Vijay S. Pande
|
+
|
Bayesian Detection of Intensity Changes in Single Molecule and Molecular Dynamics Trajectories
|
2009
|
Daniel L. Ensign
Vijay S. Pande
|
+
PDF
Chat
|
Topological methods for exploring low-density states in biomolecular folding pathways
|
2009
|
Yuan Yao
Jian Sun
Xuhui Huang
Gregory R. Bowman
Satwinder Singh
Michael Lesnick
Leonidas Guibas
Vijay S. Pande
Gunnar Carlsson
|
+
|
Folding@Home and Genome@Home: Using distributed computing to tackle previously intractable problems in computational biology
|
2009
|
Stefan Larson
Michael R. Shirts
Vijay S. Pande
Christopher D. Snow
|
+
|
Hard Data on Soft Errors: A Large-Scale Assessment of Real-World Error Rates in GPGPU
|
2009
|
Imran S. Haque
Vijay S. Pande
|
+
PDF
Chat
|
Potential for Modulation of the Hydrophobic Effect Inside Chaperonins
|
2008
|
Jeremy L. England
Vijay S. Pande
|
+
|
N-Body Simulations on GPUs
|
2007
|
Erich Elsen
Vishal Vaidyanathan
Mike Houston
Vijay S. Pande
Pat Hanrahan
Eric Darve
|
+
|
Bayesian update method for adaptive weighted sampling
|
2006
|
Sanghyun Park
Daniel L. Ensign
Vijay S. Pande
|
+
|
Folding probabilities: A novel approach to folding transitions and the two-dimensional Ising-model
|
2004
|
Peter Lenz
Bojan ĆœagroviÄ
Jessica Shapiro
Vijay S. Pande
|
+
PDF
Chat
|
Freezing of compact random heteropolymers with correlated sequence fluctuations
|
1998
|
Arup K. Chakraborty
Eugene I. Shakhnovich
Vijay S. Pande
|
+
PDF
Chat
|
Freezing Transition of Compact Polyampholytes
|
1996
|
Vijay S. Pande
Alexander Y. Grosberg
Chris Joerg
Mehran Kardar
Toyoichi Tanaka
|
+
PDF
Chat
|
Is Heteropolymer Freezing Well Described by the Random Energy Model?
|
1996
|
Vijay S. Pande
Alexander Y. Grosberg
Chris Joerg
Toyoichi Tanaka
|
+
PDF
Chat
|
How accurate must potentials be for successful modeling of protein folding?
|
1995
|
Vijay S. Pande
Alexander Y. Grosberg
Toyoichi Tanaka
|
+
PDF
Chat
|
Freezing transition of random heteropolymers consisting of an arbitrary set of monomers
|
1995
|
Vijay S. Pande
Alexander Y. Grosberg
Toyoichi Tanaka
|
+
|
Phase diagram of imprinted copolymers
|
1994
|
Vijay S. Pande
Alexander Y. Grosberg
Toyoichi Tanaka
|
+
|
Enumerations of the Hamiltonian walks on a cubic sublattice
|
1994
|
Vijay S. Pande
Chris Joerg
Alexander Y. Grosberg
Toyoichi Tanaka
|