Vijay S. Pande

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials 2023 Peter Eastman
Raimondas Galvelis
RaĂșl P. PelĂĄez
Charlles R. A. Abreu
Stephen E. Farr
Emilio Gallicchio
Anton Gorenko
Michael M. Henry
Frank Hu
Jing Huang
+ PDF Chat Folding@home: Achievements from over 20 years of citizen science herald the exascale era 2023 Vincent A. Voelz
Vijay S. Pande
Gregory R. Bowman
+ Folding@home: achievements from over twenty years of citizen science herald the exascale era 2023 Vincent A. Voelz
Vijay S. Pande
Gregory R. Bowman
+ OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials 2023 Peter Eastman
Raimondas Galvelis
RaĂșl P. PelĂĄez
Charlles R. A. Abreu
Stephen E. Farr
Emilio Gallicchio
Anton Gorenko
Michael M. Henry
Frank Hu
Jing Huang
+ Classical Quantum Optimization with Neural Network Quantum States. 2019 Joseph Gomes
Keri A. McKiernan
Peter Eastman
Vijay S. Pande
+ Physical machine learning outperforms "human learning" in Quantum Chemistry 2019 Anton V. Sinitskiy
Vijay S. Pande
+ Predicting Gene Expression Between Species with Neural Networks 2019 Peter Eastman
Vijay S. Pande
+ Pre-training Graph Neural Networks. 2019 Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Ćœitnik
Percy Liang
Vijay S. Pande
Jure Leskovec
+ Predicting Toxicity from Gene Expression with Neural Networks 2019 Peter Eastman
Vijay S. Pande
+ Step Change Improvement in ADMET Prediction with PotentialNet Deep Featurization 2019 Evan N. Feinberg
Robert P. Sheridan
Elizabeth Joshi
Vijay S. Pande
Alan C. Cheng
+ Strategies for Pre-training Graph Neural Networks 2019 Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Ćœitnik
Percy Liang
Vijay S. Pande
Jure Leskovec
+ Physical machine learning outperforms "human learning" in Quantum Chemistry 2019 Anton V. Sinitskiy
Vijay S. Pande
+ Predicting Gene Expression Between Species with Neural Networks 2019 Peter Eastman
Vijay S. Pande
+ Predicting Toxicity from Gene Expression with Neural Networks 2019 Peter Eastman
Vijay S. Pande
+ PDF Chat Note: Variational encoding of protein dynamics benefits from maximizing latent autocorrelation 2018 Hannah K. Wayment-Steele
Vijay S. Pande
+ PotentialNet for Molecular Property Prediction 2018 Evan N. Feinberg
Debnil Sur
Zhenqin Wu
Brooke E. Husic
Huanghao Mai
Yang Li
Saisai Sun
Jianyi Yang
Bharath Ramsundar
Vijay S. Pande
+ PDF Chat Automated design of collective variables using supervised machine learning 2018 Mohammad M. Sultan
Vijay S. Pande
+ Weakly-Supervised Deep Learning of Heat Transport via Physics Informed Loss 2018 Rishi Sharma
Amir Barati Farimani
Joe Gomes
Peter Eastman
Vijay S. Pande
+ PDF Chat Variational encoding of complex dynamics 2018 Carlos X. HernĂĄndez
Hannah K. Wayment-Steele
Mohammad M. Sultan
Brooke E. Husic
Vijay S. Pande
+ Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation 2018 Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
Jure Leskovec
+ PDF Chat Communication: Adaptive boundaries in multiscale simulations 2018 Jason A. Wagoner
Vijay S. Pande
+ Note: Variational Encoding of Protein Dynamics Benefits from Maximizing Latent Autocorrelation 2018 Hannah K. Wayment-Steele
Vijay S. Pande
+ Machine Learning Harnesses Molecular Dynamics to Discover New $\mu$ Opioid Chemotypes 2018 Evan N. Feinberg
Amir Barati Farimani
Rajendra Uprety
Amanda Hunkele
Gavril W. Pasternak
Susruta Majumdar
Vijay S. Pande
+ Spatial Graph Convolutions for Drug Discovery 2018 Evan N. Feinberg
Debnil Sur
Brooke E. Husic
Doris Mai
Yang Li
Jianyi Yang
Bharath Ramsundar
Vijay S. Pande
+ PotentialNet for Molecular Property Prediction 2018 Evan N. Feinberg
Debnil Sur
Zhenqin Wu
Brooke E. Husic
Huanghao Mai
Yang Li
Saisai Sun
Jianyi Yang
Bharath Ramsundar
Vijay S. Pande
+ PDF Chat Transferable Neural Networks for Enhanced Sampling of Protein Dynamics 2018 Mohammad M. Sultan
Hannah K. Wayment-Steele
Vijay S. Pande
+ Decision functions from supervised machine learning algorithms as collective variables for accelerating molecular simulations. 2018 Mohammad M. Sultan
Vijay S. Pande
+ Automated design of collective variables using supervised machine learning. 2018 Mohammad M. Sultan
Vijay S. Pande
+ PDF Chat Binding Pathway of Opiates to Ό-Opioid Receptors Revealed by Machine Learning 2018 Amir Barati Farimani
Evan N. Feinberg
Vijay S. Pande
+ PDF Chat Theoretical restrictions on longest implicit time scales in Markov state models of biomolecular dynamics 2018 Anton V. Sinitskiy
Vijay S. Pande
+ Transferable neural networks for enhanced sampling of protein dynamics 2018 Mohammad M. Sultan
Hannah K. Wayment-Steele
Vijay S. Pande
+ Using Deep Learning for Segmentation and Counting within Microscopy Data 2018 Carlos X. HernĂĄndez
Mohammad M. Sultan
Vijay S. Pande
+ SentRNA: Improving computational RNA design by incorporating a prior of human design strategies 2018 Jade Shi
Rhiju Das
Vijay S. Pande
+ Deep Learning Phase Segregation 2018 Amir Barati Farimani
Joseph Gomes
Rishi Sharma
Franklin L. Lee
Vijay S. Pande
+ Improved Training with Curriculum GANs 2018 Rishi Sharma
Shane Barratt
Stefano Ermon
Vijay S. Pande
+ Deep Neural Network Computes Electron Densities and Energies of a Large Set of Organic Molecules Faster than Density Functional Theory (DFT) 2018 Anton V. Sinitskiy
Vijay S. Pande
+ Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation 2018 Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
Jure Leskovec
+ Weakly-Supervised Deep Learning of Heat Transport via Physics Informed Loss 2018 Rishi Sharma
Amir Barati Farimani
Joe Gomes
Peter Eastman
Vijay S. Pande
+ Machine Learning Harnesses Molecular Dynamics to Discover New $Ό$ Opioid Chemotypes 2018 Evan N. Feinberg
Amir Barati Farimani
Rajendra Uprety
Amanda Hunkele
Gavril W. Pasternak
Susruta Majumdar
Vijay S. Pande
+ PotentialNet for Molecular Property Prediction 2018 Evan N. Feinberg
Debnil Sur
Zhenqin Wu
Brooke E. Husic
Huanghao Mai
Yang Li
Saisai Sun
Jianyi Yang
Bharath Ramsundar
Vijay S. Pande
+ Transferable neural networks for enhanced sampling of protein dynamics 2018 Mohammad M. Sultan
Hannah K. Wayment-Steele
Vijay S. Pande
+ Automated design of collective variables using supervised machine learning 2018 Mohammad M. Sultan
Vijay S. Pande
+ PDF Chat Note: MSM lag time cannot be used for variational model selection 2017 Brooke E. Husic
Vijay S. Pande
+ PDF Chat MoleculeNet: a benchmark for molecular machine learning 2017 Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
+ Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models 2017 Bowen Liu
Bharath Ramsundar
Prasad Kawthekar
Jade Shi
Joseph Gomes
Quang Luu Nguyen
Stephen Ho
Jack L. Sloane
Paul A. Wender
Vijay S. Pande
+ PDF Chat Computationally Discovered Potentiating Role of Glycans on NMDA Receptors 2017 Anton V. Sinitskiy
Nathaniel Stanley
David H. Hackos
Jesse E. Hanson
Benjamin D. Sellers
Vijay S. Pande
+ Low Data Drug Discovery with One-Shot Learning 2017 Han Altae-Tran
Bharath Ramsundar
Aneesh Pappu
Vijay S. Pande
+ Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity 2017 Joseph Gomes
Bharath Ramsundar
Evan N. Feinberg
Vijay S. Pande
+ PDF Chat Identification of simple reaction coordinates from complex dynamics 2017 Robert T. McGibbon
Brooke E. Husic
Vijay S. Pande
+ Deep Learning the Physics of Transport Phenomena 2017 Amir Barati Farimani
Joseph Gomes
Vijay S. Pande
+ Unsupervised learning of dynamical and molecular similarity using variance minimization 2017 Brooke E. Husic
Vijay S. Pande
+ MoleculeNet: A Benchmark for Molecular Machine Learning 2017 Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
+ Retrosynthetic reaction prediction using neural sequence-to-sequence models 2017 Bowen Liu
Bharath Ramsundar
Prasad Kawthekar
Jade Shi
Joseph Gomes
Quang Luu Nguyen
Stephen Ho
Jack L. Sloane
Paul A. Wender
Vijay S. Pande
+ Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity 2017 J. Anthony Gomes
Bharath Ramsundar
Evan N. Feinberg
Vijay S. Pande
+ Computationally Discovered Potentiating Role of Glycans on NMDA Receptors 2016 Anton V. Sinitskiy
Nathaniel Stanley
David H. Hackos
Jesse E. Hanson
Benjamin D. Sellers
Vijay S. Pande
+ Learning Protein Dynamics with Metastable Switching Systems. 2016 Bharath Ramsundar
Vijay S. Pande
+ PDF Chat Molecular graph convolutions: moving beyond fingerprints 2016 Steven Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick Riley
+ PDF Chat ROCS-derived features for virtual screening 2016 Steven Kearnes
Vijay S. Pande
+ Modeling Industrial ADMET Data with Multitask Networks 2016 Steven Kearnes
Brian Goldman
Vijay S. Pande
+ Low Data Drug Discovery with One-shot Learning 2016 Han Altae-Tran
Bharath Ramsundar
Aneesh Pappu
Vijay S. Pande
+ Modeling Industrial ADMET Data with Multitask Networks 2016 Steven Kearnes
B Goldman
Vijay S. Pande
+ Learning Protein Dynamics with Metastable Switching Systems 2016 Bharath Ramsundar
Vijay S. Pande
+ Computationally Discovered Potentiating Role of Glycans on NMDA Receptors 2016 Anton V. Sinitskiy
Nathaniel Stanley
David H. Hackos
Jesse E. Hanson
Benjamin D. Sellers
Vijay S. Pande
+ PDF Chat Efficient maximum likelihood parameterization of continuous-time Markov processes 2015 Robert T. McGibbon
Vijay S. Pande
+ PDF Chat Percolation-like phase transitions in network models of protein dynamics 2015 Jeffrey K. Weber
Vijay S. Pande
+ Efficient maximum likelihood parameterization of continuous-time Markov processes 2015 Robert T. McGibbon
Vijay S. Pande
+ PDF Chat Variational cross-validation of slow dynamical modes in molecular kinetics 2015 Robert T. McGibbon
Vijay S. Pande
+ Massively Multitask Networks for Drug Discovery 2015 Bharath Ramsundar
Steven Kearnes
Patrick Riley
Dale R. Webster
David E. Konerding
Vijay S. Pande
+ Efficient maximum likelihood parameterization of continuous-time Markov processes 2015 Robert T. McGibbon
Vijay S. Pande
+ PDF Chat Perspective: Markov models for long-timescale biomolecular dynamics 2014 Christian R. Schwantes
Robert T. McGibbon
Vijay S. Pande
+ Efficient inference of protein structural ensembles 2014 Thomas J. Lane
Christian R. Schwantes
Kyle A. Beauchamp
Vijay S. Pande
+ Understanding Protein Dynamics with L1-Regularized Reversible Hidden Markov Models 2014 Robert T. McGibbon
Bharath Ramsundar
Mohammad M. Sultan
Gert Kiss
Vijay S. Pande
+ PDF Chat Inferring the Rate-Length Law of Protein Folding 2013 Thomas J. Lane
Vijay S. Pande
+ PDF Chat Probing the origins of two-state folding 2013 Thomas J. Lane
Christian R. Schwantes
Kyle A. Beauchamp
Vijay S. Pande
+ PDF Chat Inclusion of persistence length-based secondary structure in replica field theoretic models of heteropolymer freezing 2013 Jeffrey K. Weber
Vijay S. Pande
+ PDF Chat Eigenvalues of the homogeneous finite linear one step master equation: Applications to downhill folding 2012 Thomas J. Lane
Vijay S. Pande
+ PDF Chat Reducing the effect of Metropolization on mixing times in molecular dynamics simulations 2012 Jason A. Wagoner
Vijay S. Pande
+ PDF Chat Splitting Probabilities as a Test of Reaction Coordinate Choice in Single-Molecule Experiments 2011 John D. Chodera
Vijay S. Pande
+ PDF Chat Rationally Designed Turn Promoting Mutation in the Amyloid-ÎČ Peptide Sequence Stabilizes Oligomers in Solution 2011 Jayakumar Rajadas
Corey W. Liu
Paul Novick
Nicholas Kelley
Mohammed Inayathullah
Melburne C. LeMieux
Vijay S. Pande
+ A robust approach to estimating rates from time-correlation functions 2011 John D. Chodera
Phillip Elms
William C. Swope
Jan-Hendrik Prinz
Susan Marqusee
Carlos Bustamante
Frank Noé
Vijay S. Pande
+ PDF Chat Simple Theory of Protein Folding Kinetics 2010 Vijay S. Pande
+ PDF Chat Hard Data on Soft Errors: A Large-Scale Assessment of Real-World Error Rates in GPGPU 2010 Imran S. Haque
Vijay S. Pande
+ Bayesian Detection of Intensity Changes in Single Molecule and Molecular Dynamics Trajectories 2009 Daniel L. Ensign
Vijay S. Pande
+ PDF Chat Topological methods for exploring low-density states in biomolecular folding pathways 2009 Yuan Yao
Jian Sun
Xuhui Huang
Gregory R. Bowman
Satwinder Singh
Michael Lesnick
Leonidas Guibas
Vijay S. Pande
Gunnar Carlsson
+ Folding@Home and Genome@Home: Using distributed computing to tackle previously intractable problems in computational biology 2009 Stefan Larson
Michael R. Shirts
Vijay S. Pande
Christopher D. Snow
+ Hard Data on Soft Errors: A Large-Scale Assessment of Real-World Error Rates in GPGPU 2009 Imran S. Haque
Vijay S. Pande
+ PDF Chat Potential for Modulation of the Hydrophobic Effect Inside Chaperonins 2008 Jeremy L. England
Vijay S. Pande
+ N-Body Simulations on GPUs 2007 Erich Elsen
Vishal Vaidyanathan
Mike Houston
Vijay S. Pande
Pat Hanrahan
Eric Darve
+ Bayesian update method for adaptive weighted sampling 2006 Sanghyun Park
Daniel L. Ensign
Vijay S. Pande
+ Folding probabilities: A novel approach to folding transitions and the two-dimensional Ising-model 2004 Peter Lenz
Bojan Ćœagrović
Jessica Shapiro
Vijay S. Pande
+ PDF Chat Freezing of compact random heteropolymers with correlated sequence fluctuations 1998 Arup K. Chakraborty
Eugene I. Shakhnovich
Vijay S. Pande
+ PDF Chat Freezing Transition of Compact Polyampholytes 1996 Vijay S. Pande
Alexander Y. Grosberg
Chris Joerg
Mehran Kardar
Toyoichi Tanaka
+ PDF Chat Is Heteropolymer Freezing Well Described by the Random Energy Model? 1996 Vijay S. Pande
Alexander Y. Grosberg
Chris Joerg
Toyoichi Tanaka
+ PDF Chat How accurate must potentials be for successful modeling of protein folding? 1995 Vijay S. Pande
Alexander Y. Grosberg
Toyoichi Tanaka
+ PDF Chat Freezing transition of random heteropolymers consisting of an arbitrary set of monomers 1995 Vijay S. Pande
Alexander Y. Grosberg
Toyoichi Tanaka
+ Phase diagram of imprinted copolymers 1994 Vijay S. Pande
Alexander Y. Grosberg
Toyoichi Tanaka
+ Enumerations of the Hamiltonian walks on a cubic sublattice 1994 Vijay S. Pande
Chris Joerg
Alexander Y. Grosberg
Toyoichi Tanaka
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Identification of slow molecular order parameters for Markov model construction 2013 Guillermo PĂ©rez-HernĂĄndez
Fabian Paul
Toni Giorgino
Gianni De Fabritiis
Frank Noé
9
+ PDF Chat Variational cross-validation of slow dynamical modes in molecular kinetics 2015 Robert T. McGibbon
Vijay S. Pande
7
+ Scikit-learn: Machine Learning in Python 2012 FabiĂĄn Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
7
+ PDF Chat Quantum-chemical insights from deep tensor neural networks 2017 Kristof T. SchĂŒtt
Farhad Arbabzadah
Stefan Chmiela
K. MĂŒller
Alexandre Tkatchenko
7
+ Massively Multitask Networks for Drug Discovery 2015 Bharath Ramsundar
Steven Kearnes
Patrick Riley
Dale R. Webster
David E. Konerding
Vijay S. Pande
6
+ PDF Chat A Variational Approach to Modeling Slow Processes in Stochastic Dynamical Systems 2013 Frank Noé
Feliks NĂŒske
6
+ Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules 2018 Rafael Gómez‐Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernåndez-Lobato
BenjamĂ­n SĂĄnchez-Lengeling
Dennis Sheberla
Jorge Aguilera‐Iparraguirre
Timothy Hirzel
Ryan P. Adams
Alán Aspuru‐Guzik
6
+ PDF Chat Molecular graph convolutions: moving beyond fingerprints 2016 Steven Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick Riley
6
+ PDF Chat Spin glasses and the statistical mechanics of protein folding. 1987 Joseph D. Bryngelson
Peter G. Wolynes
6
+ PDF Chat Improved coarse-graining of Markov state models via explicit consideration of statistical uncertainty 2012 Gregory R. Bowman
5
+ Neural Message Passing for Quantum Chemistry 2017 Justin Gilmer
Samuel S. Schoenholz
Patrick Riley
Oriol Vinyals
George E. Dahl
5
+ PDF Chat MoleculeNet: a benchmark for molecular machine learning 2017 Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
5
+ AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery 2015 Izhar Wallach
Michael Dzamba
Abraham Heifets
4
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
4
+ PDF Chat Recommendations for evaluation of computational methods 2008 Ajay N. Jain
Anthony Nicholls
4
+ PDF Chat Variational encoding of complex dynamics 2018 Carlos X. HernĂĄndez
Hannah K. Wayment-Steele
Mohammad M. Sultan
Brooke E. Husic
Vijay S. Pande
4
+ PDF Chat Random-Energy Model: Limit of a Family of Disordered Models 1980 Bernard Derrida
4
+ Convolutional Networks on Graphs for Learning Molecular Fingerprints 2015 David Duvenaud
Dougal Maclaurin
Jorge Aguilera‐Iparraguirre
Rafael Gómez‐Bombarelli
Timothy Hirzel
Alán Aspuru‐Guzik
Ryan P. Adams
4
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
4
+ One-shot Learning with Memory-Augmented Neural Networks 2016 Adam Santoro
Sergey Bartunov
Matthew Botvinick
Daan Wierstra
Timothy Lillicrap
3
+ On the Approximation Quality of Markov State Models 2010 Marco Sarich
Frank Noé
Christof SchĂŒtte
3
+ PDF Chat PLUMED 2: New feathers for an old bird 2013 Gareth A. Tribello
Massimiliano Bonomi
Davide Branduardi
Carlo Camilloni
Giovanni Bussi
3
+ PDF Chat The NumPy Array: A Structure for Efficient Numerical Computation 2011 Stéfan van der Walt
Steven C. Colbert
Gaël Varoquaux
3
+ PDF Chat Funnels, pathways, and the energy landscape of protein folding: A synthesis 1995 Joseph D. Bryngelson
José N. Onuchic
Nicholas D. Socci
Peter G. Wolynes
3
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
3
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
3
+ PDF Chat Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method 2008 Alessandro Barducci
Giovanni Bussi
Michele Parrinello
3
+ Mean-Field Model for Protein Folding 1988 Thomas Garel
Henri Orland
3
+ Sequence to Sequence Learning with Neural Networks 2014 Ilya Sutskever
Oriol Vinyals
Quoc V. Le
3
+ Searching for Activation Functions 2017 Prajit Ramachandran
Barret Zoph
Quoc V. Le
3
+ Neural Message Passing for Quantum Chemistry 2017 Justin Gilmer
Samuel S. Schoenholz
Patrick Riley
Oriol Vinyals
George E. Dahl
3
+ Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models 2017 Bowen Liu
Bharath Ramsundar
Prasad Kawthekar
Jade Shi
Joseph Gomes
Quang Luu Nguyen
Stephen Ho
Jack L. Sloane
Paul A. Wender
Vijay S. Pande
3
+ Enumerations of the Hamiltonian walks on a cubic sublattice 1994 Vijay S. Pande
Chris Joerg
Alexander Y. Grosberg
Toyoichi Tanaka
3
+ PDF Chat ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost 2017 Justin S. Smith
Olexandr Isayev
AdriĂĄn E. Roitberg
3
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
3
+ PDF Chat Molecular enhanced sampling with autoencoders: On‐the‐fly collective variable discovery and accelerated free energy landscape exploration 2018 Wei Chen
Andrew L. Ferguson
3
+ Inductive Representation Learning on Large Graphs 2017 William L. Hamilton
Rex Ying
Jure Leskovec
3
+ PDF Chat Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics 2018 Christoph Wehmeyer
Frank Noé
3
+ PDF Chat Machine learning of molecular electronic properties in chemical compound space 2013 Grégoire Montavon
Matthias Rupp
Vivekanand V. Gobre
Álvaro Vázquez‐Mayagoitia
Katja Hansen
Alexandre Tkatchenko
Klaus‐Robert MĂŒller
O. Anatole von Lilienfeld
3
+ A Time-Independent Free Energy Estimator for Metadynamics 2014 Pratyush Tiwary
Michele Parrinello
2
+ Learning to SMILE(S) 2016 StanisƂaw JastrzÈ©bski
Damian Leƛniak
Wojciech Marian Czarnecki
2
+ PDF Chat Identification of simple reaction coordinates from complex dynamics 2017 Robert T. McGibbon
Brooke E. Husic
Vijay S. Pande
2
+ Matching Networks for One Shot Learning 2016 Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
2
+ PDF Chat Accurate sampling using Langevin dynamics 2007 Giovanni Bussi
Michele Parrinello
2
+ Spectral gap optimization of order parameters for sampling complex molecular systems 2016 Pratyush Tiwary
B. J. Berne
2
+ An Introduction to the Bootstrap 1994 Bradley Efron
Robert Tibshirani
2
+ Neural Machine Translation by Jointly Learning to Align and Translate 2014 Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
2
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
2
+ Adversarial examples in the physical world 2016 Alexey Kurakin
Ian Goodfellow
Samy Bengio
2
+ Parallel replica method for dynamics of infrequent events 1998 Arthur F. Voter
2