The power series expansion of certain infinite products q r ∏ n = 1 ∞ ( 1 − q n ) a 1 ( 1 − q 2 n ) a 2 ⋯ ( 1 − q m n ) a m $q^{r}\prod_{n=1}^{\infty}(1-q^{n})^{a_{1}}(1-q^{2n})^{a_{2}}\cdots(1-q^{mn})^{a_{m}}$

Type: Article

Publication Date: 2013-08-20

Citations: 1

DOI: https://doi.org/10.1007/s11139-013-9503-1

Locations

  • The Ramanujan Journal - View

Similar Works

Action Title Year Authors
+ Infinite product representations of some q-series 2023 Florian Münkel
Lerna Pehlivan
Kenneth S. Williams
+ Some remarks on the power product expansion of the q-exponential series 2020 Johann Cigler
+ Power Series of (𝑎𝑟𝑐𝑠𝑖𝑛𝑥)² 2010 Hongwei Chen
+ General Examination of the Infinite Series 1889 Carl Friedrich Gauß
+ Evaluation of the Infinite Series ∑ ∞ \substackn = 1( n p ) = 1 � � n p � � 4   n -1 1990 Kenneth Hardy
Kenneth S. Williams
+ The Power Series Coefficients of ζ(s) 1955 W. E. Briggs
S. Chowla
+ Expansions in series of powers of (z-cqn) 1967 Yu. A. Kaz’min
+ PDF Chat Legendre Expansions of Power Series 1999 James Guyker
+ Certain q-series identities 2016 Praveen Agarwal
Shilpi Jain
Junesang Choi
+ PDF Chat Some interesting series arising from the power series expansion of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$(\sin^{-1}x)^q$"><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mtext>sin</mml:mtext></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mi>x</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mi>q</mml:mi></mml:msup></mml:math> 2005 Habib Muzaffar
+ Infinite Series with Binomial Coefficients 1991 Courtney Moen
+ Two remarkable q-series expansions 2018 Michael D. Hirschhorn
+ Summation of the Power Series 2011 Mohammed Z. Ramadan
Hussam A. Mohammed
+ The Power Series Coefficients of ξ(s) 1955 W. E. Briggs
S. Chowla
+ Infinite Series and Products 2008 Steven G. Krantz
+ INFINITE SERIES 2005 George B. Arfken
Hans J. Weber
+ Infinite Series 2007
+ Infinite Series 1985 Frederick H. Soon
+ Infinite Series 2024
+ Infinite Series 2015 I. N. Bronshtein
K. A. Semendyayev
G. Musiol
H. Mühlig