Normed Amenability and Bounded Cohomology over Non-Archimedean Fields

Type: Article

Publication Date: 2024-07-01

Citations: 0

DOI: https://doi.org/10.1090/memo/1494

Abstract

We study continuous bounded cohomology of totally disconnected locally compact groups with coefficients in a non-Archimedean valued field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. To capture the features of classical amenability that induce the vanishing of bounded cohomology with real coefficients, we start by introducing the notion of normed <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-amenability, of which we prove an algebraic characterization. It implies that normed <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-amenable groups are locally elliptic, and it relates an invariant, the norm of a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-amenable group, to the order of its discrete finite <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-subquotients, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the characteristic of the residue field of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Moreover, we prove a characterization of discrete normed <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-amenable groups in terms of vanishing of bounded cohomology with coefficients in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The algebraic characterization shows that normed <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-amenability is a very restrictive condition, so the bounded cohomological one suggests that there should be plenty of groups with rich bounded cohomology with trivial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coefficients. We explore this intuition by studying the injectivity and surjectivity of the comparison map, for which surprisingly general statements are available. Among these, we show that if either <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has positive characteristic or its residue field has characteristic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding="application/x-tex">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then the comparison map is injective in all degrees. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite extension of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper Q Subscript p"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Q</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\mathbb {Q}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we classify unbounded and non-trivial quasimorphisms of a group and relate them to its subgroup structure. For discrete groups, we show that suitable finiteness conditions imply that the comparison map is an isomorphism; this applies in particular to finitely presented groups in degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A motivation as to why the comparison map is often an isomorphism, in stark contrast with the real case, is given by moving to topological spaces. We show that over a non-Archimedean field, bounded cohomology is a cohomology theory in the sense of Eilenberg–Steenrod, except for a weaker version of the additivity axiom which is however equivalent for finite disjoint unions. In particular there exists a Mayer–Vietoris sequence, the main missing piece for computing real bounded cohomology.

Locations

  • arXiv (Cornell University) - View - PDF
  • Memoirs of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ The Artin-Stafford gap theorem 2005 Agata Smoktunowicz
+ PDF Chat Primitive obstructions in the cohomology of loopspaces 1984 Frank Williams
+ PDF Chat Bounding ramification by covers and curves 2021 Hélène Esnault
Vasudevan Srinivas
+ PDF Chat Hybrid spaces with interesting cohomology 1995 Kathryn Lesh
+ PDF Chat The fixed point theorem in equivariant cohomology 1990 John D. S. Jones
Scott Petrack
+ PDF Chat 𝐺-spaces with prescribed equivariant cohomology 1983 Georgia Triantafillou
+ Duality for admissible locally analytic representations 2005 Peter Schneider
Jeremy Teitelbaum
+ Equivariant connective 𝐾-theory 2021 Nikita A. Karpenko
Alexander Merkurjev
+ PDF Chat Amenability and the structure of the algebras 𝐴_{𝑝}(𝐺) 1994 Brian Forrest
+ PDF Chat The singular cohomology of the inverse limit of a Postnikov tower is representable 1986 Jerzy Dydak
Ross Geoghegan
+ Characterizations of spectra with 𝒰-injective cohomology which satisfy the Brown-Gitler property 1999 David J. Hunter
Nicholas J. Kuhn
+ PDF Chat Continuous cohomology for compactly supported vectorfields on 𝑅ⁿ 1976 Steven Shnider
+ Twisted Patterson-Sullivan Measures and Applications to Amenability and Coverings 2025 Rémi Coulon
Rhiannon Dougall
Barbara Schapira
Samuel Tapie
+ On noncontractible compacta with trivial homology and homotopy groups 2009 Umed H. Karimov
Dušan Repovš
+ PDF Chat Locally constant cohomology 1992 Edwin H. Spanier
+ PDF Chat Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements 2014 Chrysostomos Psaroudakis
Øystein Skartsæterhagen
Øyvind Solberg
+ Geometric criteria for 𝔸¹-connectedness and applications to norm varieties 2022 Chetan Balwe
Amit Hogadi
Anand Sawant
+ PDF Chat Voiculescu’s double commutant theorem and the cohomology of 𝐶*-algebras 1991 John Phillips
Iain Raeburn
+ PDF Chat A finiteness theorem in the Galois cohomology of algebraic number fields 1987 Wayne Raskind
+ PDF Chat On the cohomology of 𝑝-adic analytic spaces, I: The basic comparison theorem 2024 Pierre Colmez
Wiesława Nizioł

Works That Cite This (0)

Action Title Year Authors