Type: Article
Publication Date: 2024-07-01
Citations: 0
DOI: https://doi.org/10.1090/memo/1494
We study continuous bounded cohomology of totally disconnected locally compact groups with coefficients in a non-Archimedean valued field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. To capture the features of classical amenability that induce the vanishing of bounded cohomology with real coefficients, we start by introducing the notion of normed <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-amenability, of which we prove an algebraic characterization. It implies that normed <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-amenable groups are locally elliptic, and it relates an invariant, the norm of a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-amenable group, to the order of its discrete finite <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-subquotients, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the characteristic of the residue field of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Moreover, we prove a characterization of discrete normed <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-amenable groups in terms of vanishing of bounded cohomology with coefficients in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The algebraic characterization shows that normed <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-amenability is a very restrictive condition, so the bounded cohomological one suggests that there should be plenty of groups with rich bounded cohomology with trivial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coefficients. We explore this intuition by studying the injectivity and surjectivity of the comparison map, for which surprisingly general statements are available. Among these, we show that if either <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has positive characteristic or its residue field has characteristic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding="application/x-tex">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then the comparison map is injective in all degrees. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite extension of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper Q Subscript p"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Q</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\mathbb {Q}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we classify unbounded and non-trivial quasimorphisms of a group and relate them to its subgroup structure. For discrete groups, we show that suitable finiteness conditions imply that the comparison map is an isomorphism; this applies in particular to finitely presented groups in degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A motivation as to why the comparison map is often an isomorphism, in stark contrast with the real case, is given by moving to topological spaces. We show that over a non-Archimedean field, bounded cohomology is a cohomology theory in the sense of Eilenberg–Steenrod, except for a weaker version of the additivity axiom which is however equivalent for finite disjoint unions. In particular there exists a Mayer–Vietoris sequence, the main missing piece for computing real bounded cohomology.
Action | Title | Year | Authors |
---|