Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements
Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements
Given an artin algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:annotation encoding="application/x-tex">\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with an idempotent element <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a"> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding="application/x-tex">a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we compare the algebras <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi …