The Ramsey Numbers of Squares of Paths and Cycles

Type: Article

Publication Date: 2024-04-05

Citations: 0

DOI: https://doi.org/10.37236/11847

Abstract

The square $G^2$ of a graph $G$ is the graph on $V(G)$ with a pair of vertices $uv$ an edge whenever $u$ and $v$ have distance $1$ or $2$ in $G$. Given graphs $G$ and $H$, the Ramsey number $R(G,H)$ is the minimum $N$ such that whenever the edges of the complete graph $K_N$ are coloured with red and blue, there exists either a red copy of $G$ or a blue copy of $H$.
 We prove that for all sufficiently large $n$ we have$$ R(P_{3n}^2,P_{3n}^2)=R(P_{3n+1}^2,P_{3n+1}^2)=R(C_{3n}^2,C_{3n}^2)=9n-3\mbox{ and } R(P_{3n+2}^2,P_{3n+2}^2)=9n+1.$$
 We also show that for any $\gamma>0$ and $\Delta$ there exists $\beta>0$ such that the following holds: If $G$ can be coloured with three colours such that all colour classes have size at most $n$, the maximum degree $\Delta(G)$ of $G$ is at most $\Delta$, and $G$ has bandwidth at most $\beta n$, then $R(G,G)\le (3+\gamma)n$.

Locations

  • The Electronic Journal of Combinatorics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • London School of Economics and Political Science Research Online (London School of Economics and Political Science) - View - PDF

Similar Works

Action Title Year Authors
+ The Ramsey numbers of squares of paths and cycles 2022 Peter J. Allen
Domenico Mergoni Cecchelli
Barnaby Roberts
Jozef Skokan
+ Path-fan Ramsey numbers 2003 Muhammad Salman
Hajo Broersma
+ The size-Ramsey number of powers of paths 2017 Dennis Clemens
Matthew Jenssen
Yoshiharu Kohayakawa
Natasha Morrison
Guilherme Oliveira Mota
Damian Reding
Barnaby Roberts
+ The size-Ramsey number of powers of paths 2017 Dennis Clemens
Matthew Jenssen
Yoshiharu Kohayakawa
Natasha Morrison
Guilherme Oliveira Mota
Damian Reding
Barnaby Roberts
+ PDF Chat Ramsey Numbers of Squares of Paths 2015 Peter Allen
Barnaby Roberts
Jozef Skokan
+ PDF Chat Ramsey numbers of cycles versus general graphs 2021 John Haslegrave
Joseph Hyde
Jaehoon Kim
Hong Liu
+ Size-Ramsey numbers of cycles versus a path 2016 Andrzej Dudek
Farideh Khoeini
Paweł Prałat
+ Size-Ramsey numbers of cycles versus a path 2016 Andrzej Dudek
Farideh Khoeini
Paweł Prałat
+ Bipartite Ramsey numbers of large cycles 2018 Shaoqiang Liu
Yuejian Peng
+ Ramsey numbers of cycles versus general graphs 2021 John Haslegrave
Joseph Hyde
Jaehoon Kim
Hong Liu
+ Cycle-Complete Graph Ramsey Numbers 2020 Marit Onstwedder
+ PDF Chat The Ramsey numbers <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si13.gif" display="inline" overflow="scroll"><mml:mi>R</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg… 2007 Yaojun Chen
T.C.E. Cheng
Yunqing Zhang
+ Closing the Gap on Path-Kipas Ramsey Numbers 2015 Binlong Li
Yanbo Zhang
Halina Bielak
Hajo Broersma
Premek Holub
+ PDF Chat Ramsey numbers of cycles versus general graphs 2023 John Haslegrave
Joseph Hyde
Jaehoon Kim
Hong Liu
+ The Ramsey indexes of paths and cycles 2024 Ritabrato Chatterjee
Ping Zhang
+ Size Ramsey numbers of paths 2018 Chunlin You
Qizhong Lin
+ On Some Three-Color Ramsey Numbers for Paths 2012 Janusz Dybizbański
Tomasz Dzido
Stanisław Radziszowski
+ On some three-color Ramsey numbers for paths 2015 Janusz Dybizbański
Tomasz Dzido
Stanisław Radziszowski
+ PDF Chat Size Ramsey numbers of small graphs versus fans or paths 2024 Yufan Li
Yanbo Zhang
Yunqing Zhang
+ On the size Ramsey number of all cycles versus a path 2020 Deepak Bal
Ely Schudrich

Works That Cite This (0)

Action Title Year Authors