Author Description

Login to generate an author description

Ask a Question About This Mathematician

All published works (7)

We provide an optimal sufficient condition, relating minimum degree and bandwidth, for a graph to contain a spanning subdivision of the complete bipartite graph $K_{2,\ell}$. This includes the containment of … We provide an optimal sufficient condition, relating minimum degree and bandwidth, for a graph to contain a spanning subdivision of the complete bipartite graph $K_{2,\ell}$. This includes the containment of Hamilton paths and cycles, and has applications in the random geometric graph model. Our proof provides a greedy algorithm for constructing such structures.
The square $G^2$ of a graph $G$ is the graph on $V(G)$ with a pair of vertices $uv$ an edge whenever $u$ and $v$ have distance $1$ or $2$ in … The square $G^2$ of a graph $G$ is the graph on $V(G)$ with a pair of vertices $uv$ an edge whenever $u$ and $v$ have distance $1$ or $2$ in $G$. Given graphs $G$ and $H$, the Ramsey number $R(G,H)$ is the minimum $N$ such that whenever the edges of the complete graph $K_N$ are coloured with red and blue, there exists either a red copy of $G$ or a blue copy of $H$.
 We prove that for all sufficiently large $n$ we have$$ R(P_{3n}^2,P_{3n}^2)=R(P_{3n+1}^2,P_{3n+1}^2)=R(C_{3n}^2,C_{3n}^2)=9n-3\mbox{ and } R(P_{3n+2}^2,P_{3n+2}^2)=9n+1.$$
 We also show that for any $\gamma>0$ and $\Delta$ there exists $\beta>0$ such that the following holds: If $G$ can be coloured with three colours such that all colour classes have size at most $n$, the maximum degree $\Delta(G)$ of $G$ is at most $\Delta$, and $G$ has bandwidth at most $\beta n$, then $R(G,G)\le (3+\gamma)n$.
Answering a question by Letzter and Snyder, we prove that for large enough $k$ any $n$-vertex graph $G$ with minimum degree at least $\frac{1}{2k-1}n$ and without odd cycles of length … Answering a question by Letzter and Snyder, we prove that for large enough $k$ any $n$-vertex graph $G$ with minimum degree at least $\frac{1}{2k-1}n$ and without odd cycles of length less than $2k+1$ is $3$-colourable. In fact, we prove a stronger result that works with a slightly smaller minimum degree.
Schur's theorem states that in any $k$-colouring of the set of integers $[n]$ there is a monochromatic solution to $a+b=c$, provided $n$ is sufficiently large. Abbott and Wang studied the … Schur's theorem states that in any $k$-colouring of the set of integers $[n]$ there is a monochromatic solution to $a+b=c$, provided $n$ is sufficiently large. Abbott and Wang studied the size of the largest subset of $[n]$ such that there is a $k$-colouring avoiding a monochromatic $a+b=c$. In other directions, the minimum number of $a+b=c$ in $k$-colourings of $[n]$ and the probability threshold in random subsets of $[n]$ for the property of having a monochromatic $a+b=c$ in any $k$-colouring were investigated. In this paper, we study natural generalisations of these streams to products $ab=c$, in a deterministic, random, and randomly perturbed environments.
We denote by $\text{ex}(n, H, F)$ the maximum number of copies of $H$ in an $n$-vertex graph that does not contain $F$ as a subgraph. Recently, Grzesik, Gy\H{o}ri, Salia, Tompkins … We denote by $\text{ex}(n, H, F)$ the maximum number of copies of $H$ in an $n$-vertex graph that does not contain $F$ as a subgraph. Recently, Grzesik, Gy\H{o}ri, Salia, Tompkins considered conditions on $H$ under which $\text{ex}(n, H, K_r)$ is asymptotically attained at a blow-up of $K_{r-1}$, and proposed a conjecture. In this note we disprove their conjecture.
The square $G^2$ of a graph $G$ is the graph on $V(G)$ with a pair of vertices $uv$ an edge whenever $u$ and $v$ have distance $1$ or $2$ in … The square $G^2$ of a graph $G$ is the graph on $V(G)$ with a pair of vertices $uv$ an edge whenever $u$ and $v$ have distance $1$ or $2$ in $G$. Given graphs $G$ and $H$, the Ramsey number $R(G,H)$ is the minimum $N$ such that whenever the edges of the complete graph $K_N$ are coloured with red and blue, there exists either a red copy of $G$ or a blue copy of $H$. We prove that for all sufficiently large $n$ we have \[R(P_{3n}^2,P_{3n}^2)=R(P_{3n+1}^2,P_{3n+1}^2)=R(C_{3n}^2,C_{3n}^2)=9n-3\mbox{ and } R(P_{3n+2}^2,P_{3n+2}^2)=9n+1.\] We also show that for any $\gamma>0$ and $\Delta$ there exists $\beta>0$ such that the following holds. If $G$ can be coloured with three colours such that all colour classes have size at most $n$, the maximum degree $\Delta(G)$ of $G$ is at most $\Delta$, and $G$ has bandwidth at most $\beta n$, then $R(G,G)\le (3+\gamma)n$.

Commonly Cited References

We prove the statement of the title, thereby solving a $100 problem of Ron Graham. This was solved independently by Tomasz Schoen. We prove the statement of the title, thereby solving a $100 problem of Ron Graham. This was solved independently by Tomasz Schoen.
Abstract This paper investigates the number of random edges required to add to an arbitrary dense graph in order to make the resulting graph hamiltonian with high probability. Adding Θ(n) … Abstract This paper investigates the number of random edges required to add to an arbitrary dense graph in order to make the resulting graph hamiltonian with high probability. Adding Θ(n) random edges is both necessary and sufficient to ensure this for all such dense graphs. If, however, the original graph contains no large independent set, then many fewer random edges are required. We prove a similar result for directed graphs. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 22: 33–42, 2003
A set<italic>S</italic>of integers is said to be sum-free if<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a comma b element-of upper S"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:mo>∈<!-- ∈ --></mml:mo><mml:mi>S</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">a,b \in S</mml:annotation></mml:semantics></mml:math></inline-formula>implies<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a plus b not-an-element-of upper S"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:mo>∉<!-- … A set<italic>S</italic>of integers is said to be sum-free if<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a comma b element-of upper S"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:mo>∈<!-- ∈ --></mml:mo><mml:mi>S</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">a,b \in S</mml:annotation></mml:semantics></mml:math></inline-formula>implies<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a plus b not-an-element-of upper S"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:mo>∉<!-- ∉ --></mml:mo><mml:mi>S</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">a + b \notin S</mml:annotation></mml:semantics></mml:math></inline-formula>. In this paper, we investigate two new problems on sum-free sets: (1) Let<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis k right-parenthesis"><mml:semantics><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">f(k)</mml:annotation></mml:semantics></mml:math></inline-formula>denote the largest positive integer for which there exists a partition of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet 1 comma 2 comma ellipsis comma f left-parenthesis k right-parenthesis EndSet"><mml:semantics><mml:mrow><mml:mo fence="false" stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mo>…<!-- … --></mml:mo><mml:mo>,</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo fence="false" stretchy="false">}</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">\{ 1,2, \ldots ,f(k)\}</mml:annotation></mml:semantics></mml:math></inline-formula>into<italic>k</italic>sum-free sets, and let<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h left-parenthesis k right-parenthesis"><mml:semantics><mml:mrow><mml:mi>h</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">h(k)</mml:annotation></mml:semantics></mml:math></inline-formula>denote the largest positive integer for which there exists a partition of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet 1 comma 2 comma ellipsis comma h left-parenthesis k right-parenthesis EndSet"><mml:semantics><mml:mrow><mml:mo fence="false" stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mo>…<!-- … --></mml:mo><mml:mo>,</mml:mo><mml:mi>h</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo fence="false" stretchy="false">}</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">\{ 1,2, \ldots ,h(k)\}</mml:annotation></mml:semantics></mml:math></inline-formula>into<italic>k</italic>sets which are sum-free<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mod h left-parenthesis k right-parenthesis plus 1"><mml:semantics><mml:mrow><mml:mo lspace="thickmathspace" rspace="thickmathspace">mod</mml:mo><mml:mi>h</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:annotation encoding="application/x-tex">\bmod h(k) + 1</mml:annotation></mml:semantics></mml:math></inline-formula>. We obtain evidence to support the conjecture that<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis k right-parenthesis equals h left-parenthesis k right-parenthesis"><mml:semantics><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>h</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">f(k) = h(k)</mml:annotation></mml:semantics></mml:math></inline-formula>for all<italic>k</italic>. (2) Let<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis n comma k right-parenthesis"><mml:semantics><mml:mrow><mml:mi>g</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">g(n,k)</mml:annotation></mml:semantics></mml:math></inline-formula>denote the cardinality of a largest subset of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet 1 comma 2 comma ellipsis comma n EndSet"><mml:semantics><mml:mrow><mml:mo fence="false" stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mo>…<!-- … --></mml:mo><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo fence="false" stretchy="false">}</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">\{ 1,2, \ldots ,n\}</mml:annotation></mml:semantics></mml:math></inline-formula>that can be partitioned into<italic>k</italic>sum-free sets. We obtain upper and lower bounds for<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis n comma k right-parenthesis"><mml:semantics><mml:mrow><mml:mi>g</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">g(n,k)</mml:annotation></mml:semantics></mml:math></inline-formula>. We also show that<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis n comma 1 right-parenthesis equals left-bracket left-parenthesis n plus 1 right-parenthesis slash 2 right-bracket"><mml:semantics><mml:mrow><mml:mi>g</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">g(n,1) = [(n + 1)/2]</mml:annotation></mml:semantics></mml:math></inline-formula>and indicate how one may show that for all<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n less-than-or-slanted-equals 54 comma g left-parenthesis n comma 2 right-parenthesis equals n minus left-bracket n slash 5 right-bracket"><mml:semantics><mml:mrow><mml:mi>n</mml:mi><mml:mo>⩽<!-- ⩽ --></mml:mo><mml:mn>54</mml:mn><mml:mo>,</mml:mo><mml:mi>g</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>n</mml:mi><mml:mo>−<!-- − --></mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mi>n</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mn>5</mml:mn><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">n \leqslant 54,g(n,2) = n - [n/5]</mml:annotation></mml:semantics></mml:math></inline-formula>.
A set <italic>S</italic> of integers is said to be sum-free if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a comma b element-of upper S"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation … A set <italic>S</italic> of integers is said to be sum-free if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a comma b element-of upper S"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">a,b \in S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> implies <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a plus b not-an-element-of upper S"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>+</mml:mo> <mml:mi>b</mml:mi> <mml:mo>∉</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">a + b \notin S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis n comma k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g(n,k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the cardinality of a largest subset of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet 1 comma 2 comma ellipsis comma n EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ 1,2, \ldots ,n\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that can be partitioned into <italic>k</italic> sum-free sets. In this note we show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis n comma 2 right-parenthesis equals n minus left-bracket n slash 5 right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>5</mml:mn> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g(n,2) = n - [n/5]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Let G be a graph with chromatic number χ and with t being the minimum number of points in any color class of any point-coloring of G with χ colors. … Let G be a graph with chromatic number χ and with t being the minimum number of points in any color class of any point-coloring of G with χ colors. Let H be any connected graph and let Hn be a graph on n points which is homeomorphic to H. It is proved that if n is large enough, the Ramsey number r(G, Hn) satisfies r(G, Hn) = (χ − l)(n −l) + t. It is also shown that for some G, no such result holds when Hn is a star with n points.
We determine the order of magnitude of H(x, y, z), the number of integers n ≤ x having a divisor in (y, z], for all x, y and z.We also … We determine the order of magnitude of H(x, y, z), the number of integers n ≤ x having a divisor in (y, z], for all x, y and z.We also study H r (x, y, z), the number of integers n ≤ x having exactly r divisors in (y, z].When r = 1 we establish the order of magnitude of H 1 (x, y, z) for all x, y, z satisfying z ≤ x 1/2-ε .For every r ≥ 2, C > 1 and ε > 0, we determine the order of magnitude of H r (x, y, z) uniformly for y large and y + y/(log y) log 4-1-ε ≤ z ≤ min(y C , x 1/2-ε ).As a consequence of these bounds, we settle a 1960 conjecture of Erdős and some conjectures of Tenenbaum.One key element of the proofs is a new result on the distribution of uniform order statistics.
The blow-up lemma states that a system of super-regular pairs contains all bounded degree spanning graphs as subgraphs that embed into a corresponding system of complete pairs. This lemma has … The blow-up lemma states that a system of super-regular pairs contains all bounded degree spanning graphs as subgraphs that embed into a corresponding system of complete pairs. This lemma has far-reaching applications in extremal combinatorics. We prove sparse analogues of the blow-up lemma for subgraphs of random and of pseudorandom graphs. Our main results are the following three sparse versions of the blow-up lemma: one for embedding spanning graphs with maximum degree $Δ$ in subgraphs of $G(n,p)$ with $p=C(\log n/n)^{1/Δ}$; one for embedding spanning graphs with maximum degree $Δ$ and degeneracy $D$ in subgraphs of $G(n,p)$ with $p=C_Δ\big(\log n/n\big)^{1/(2D+1)}$; and one for embedding spanning graphs with maximum degree $Δ$ in $(p,cp^{\max(4,(3Δ+1)/2)}n)$-bijumbled graphs. We also consider various applications of these lemmas.
Given a dense subset $A$ of the first $n$ positive integers, we provide a short proof showing that for $p=\omega(n^{-2/3}),$ the so-called randomly perturbed set $A \cup [n]_p$ a.a.s. has … Given a dense subset $A$ of the first $n$ positive integers, we provide a short proof showing that for $p=\omega(n^{-2/3}),$ the so-called randomly perturbed set $A \cup [n]_p$ a.a.s. has the property that any 2-coloring of it has a monochromatic Schur triple, i.e., a triple of the form $(a,b,a+b)$. This result is optimal since there are dense sets $A$, for which $A\cup [n]_p$ does not possess this property for $p=o(n^{-2/3})$.
For a fixed graph H, the Ramsey number r(H) is defined to be the least integer N such that in any 2-coloring of the edges of the complete graph KN, … For a fixed graph H, the Ramsey number r(H) is defined to be the least integer N such that in any 2-coloring of the edges of the complete graph KN, some monochromatic copy of H is always formed. Let ℋ︁(n, Δ) denote the class of graphs H having n vertices and maximum degree at most Δ. It was shown by Chvatál, Rödl, Szemerédi, and Trotter that for each Δ there exists c(Δ) such that r(H) < c(Δ)n for all H ϵ ℋ︁(n, Δ). That is, the Ramsey numbers grow linearly with the size of H. However, their proof relied on the well-known regularity lemma of Szemerédi and only gave an upper bound for c(Δ) which grew like an exponential tower of 2′ s of height Δ. This was remedied substantially in a recent paper of Eaton, who showed that one could take c(Δ) < 2 for some fixed c. Eaton, however, also used a variant of the regularity lemma in her proof. In this paper, we avoid the use of the regularity lemma altogether, and show that one can in fact take, for some fixed c, c(Δ) < 2 in the general case, and even c(Δ) < 2cΔ log Δ if H is bipartite. In particular, we improve an old upper bound on the Ramsey number of the n-cube due to Beck. We also show that for a fixed c′ > 0, and for all n and Δ, there are graphs H′ ϵ ℋ︁ (n, Δ) with r(H′) > 2c′Δn, which is not so far from our upper bound. In addition, we indicate how the upper bound result can be extended to the larger class of so-called p-arrangeable graphs, introduced by Chen and Schelp. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 176–192, 2000
A set A of integers is said to be Schur if any two-colouring of A results in monochromatic x,y and z with x+y=z. We study the following problem: how many … A set A of integers is said to be Schur if any two-colouring of A results in monochromatic x,y and z with x+y=z. We study the following problem: how many random integers from [n] need to be added to some A⊆[n] to ensure with high probability that the resulting set is Schur? Hu showed in 1980 that when |A|>⌈4n5⌉, no random integers are needed, as A is already guaranteed to be Schur. Recently, Aigner-Horev and Person showed that for any dense set of integers A⊆[n], adding ω(n1/3) random integers suffices, noting that this is optimal for sets A with |A|≤⌈n2⌉. We close the gap between these two results by showing that if A⊆[n] with |A|=⌈n2⌉+t<⌈4n5⌉, then adding ω(min{n1/3,nt−1}) random integers will with high probability result in a set that is Schur. Our result is optimal for all t, and we further provide a stability result showing that one needs far fewer random integers when A is not close in structure to the extremal examples. We also initiate the study of perturbing sparse sets of integers A by using algorithmic arguments and the theory of hypergraph containers to provide nontrivial upper and lower bounds.