Measurements of low energy nuclear recoil quenching factors for Na and I recoils in the NaI(Tl) scintillator

Type: Preprint

Publication Date: 2024-02-23

Citations: 1

DOI: https://doi.org/10.48550/arxiv.2402.15122

View Chat PDF

Abstract

Elastic scattering off nuclei in target detectors, involving interactions with dark matter and coherent elastic neutrino nuclear recoil (CE$\nu$NS), results in the deposition of low energy within the nuclei, dissipating rapidly through a combination of heat and ionization. The primary energy loss mechanism for nuclear recoil is heat, leading to consistently smaller measurable scintillation signals compared to electron recoils of the same energy. The nuclear recoil quenching factor (QF), representing the ratio of scintillation light yield produced by nuclear recoil to that of electron recoil at the same energy, is a critical parameter for understanding dark matter and neutrino interactions with nuclei. The low energy QF of NaI(Tl) crystals, commonly employed in dark matter searches and CE$\nu$NS measurements, is of substantial importance. Previous low energy QF measurements were constrained by contamination from photomultiplier tube (PMT)-induced noise, resulting in an observed light yield of approximately 15 photoelectrons per keVee (kilo-electron-volt electron-equivalent energy) and nuclear recoil energy above 5 keVnr (kilo-electron-volt nuclear recoil energy). Through enhanced crystal encapsulation, an increased light yield of around 26 photoelectrons per keVee is achieved. This improvement enables the measurement of the nuclear recoil QF for sodium nuclei at an energy of 3.8 $\pm$ 0.6 keVnr with a QF of 11.2 $\pm$ 1.7%. Furthermore, a reevaluation of previously reported QF results is conducted, incorporating enhancements in low energy events based on waveform simulation. The outcomes are generally consistent with various recent QF measurements for sodium and iodine.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Measurements of low-energy nuclear recoil quenching factors for Na and I recoils in the NaI(Tl) scintillator 2024 S. H. Lee
H. W. Joo
H. J. Kim
K.W. Kim
S.K. Kim
Y.D. Kim
Y. J. Ko
H. S. Lee
Jooyoung Lee
H.S. Park
+ PDF Chat A measurement of the sodium and iodine scintillation quenching factors across multiple NaI(Tl) detectors to identify systematics 2024 D. Cintas
S. Hedges
W. G. Thompson
Peng An
C. Awe
P. S. Barbeau
E. Barbosa de Souza
J. H. Jo
Liqian Li
M. MartĂ­nez
+ PDF Chat Quenching factor measurements of sodium nuclear recoils in NaI:Tl determined by spectrum fitting 2021 L. J. Bignell
I. Mahmood
F. Nuti
G. J. Lane
A. Akber
E. L. Barberio
To. Baroncelli
B. J. Coombes
W. Dix
J. T. H. Dowie
+ Study on NaI(Tl) crystal at -35 C for dark matter detection. 2021 S. H. Lee
G. S. Kim
H. J. Kim
K. W. Kim
J. Y. Lee
H. S. Lee
+ Nonproportionality of NaI(Tl) Scintillation Detector for Dark Matter Search Experiments 2024 S. M. Lee
G. Adhikari
N. Carlin
Jin Cho
J. J. Choi
S. Choi
A. C. Ezeribe
L. E. Fran. a
C. Ha
I. S. Hahn
+ Quenching factor measurement for NaI(Tl) scintillation crystal 2018 H. W. Joo
HOON-MIN PARK
J.H.Kim
S.K.Kim
Y.D.Kim
H.S.Lee
S.H.Kim
+ Quenching factor measurement for NaI(Tl) scintillation crystal 2018 H. W. Joo
H. S. Park
J. H. Kim
S. K. Kim
Y. D. Kim
H. S. Lee
S. H. Kim
+ A study of the NaI(Tl) detector response to low energy nuclear recoils and a measurement of the quenching factor in NaI(Tl) 2017 T. Stiegler
C. Sofka
R. C. Webb
James T. White
+ A study of the NaI(Tl) detector response to low energy nuclear recoils and a measurement of the quenching factor in NaI(Tl) 2017 T. Stiegler
C. Sofka
R. C. Webb
James T. White
+ Quenching Factor consistency across several NaI(Tl) crystals 2021 D. Cintas
Peng An
C. Awe
P. S. Barbeau
E. Barbosa de Souza
S. Hedges
J. H. Jo
M. MartĂ­nez
R. Maruyama
L. Li
+ PDF Chat Quenching and channeling of nuclear recoils in NaI(Tl): Implications for dark-matter searches 2013 J. I. Collar
+ PDF Chat Upgrade of NaI(Tl) crystal encapsulation for the NEON experiment 2024 J. J. Choi
E. J. Jeon
J. Y. Kim
K. W. Kim
S. H. Kim
S. K. Kim
Y. D. Kim
Young Jin Ko
Byoung-cheol Koh
C. Ha
+ Improving the light collection using a new NaI(Tl)crystal encapsulation 2020 J.J. Choi
Byung‐Joo Park
C. Ha
K.W. Kim
S.K. Kim
Y.D. Kim
Y. J. Ko
H.S. Lee
S.H. Lee
S. L. Olsen
+ PDF Chat Development of Cryogenic Scintillation Detectors for the Search of New Physics 2024 K. Ding
+ PDF Chat Growth of ultra-high purity NaI(Tl) crystals for dark matter searches 2020 B. Suerfu
M. Wada
Winston Peloso
Michael Souza
Frank Calaprice
Joshua Tower
Guido Ciampi
+ PDF Chat Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold 2015 J. Xu
E. Shields
Frank Calaprice
S. Westerdale
F. Froborg
B. Suerfu
Thomas Alexander
A. Aprahamian
Henning Back
Clark Casarella
+ PDF Chat Waveform Simulation for Scintillation Characteristics of NaI(Tl) Crystal 2024 J. J. Choi
C. Ha
E. J. Jeon
Ki Woong Kim
Seong Keun Kim
Y. D. Kim
Y. J. Ko
Byoung-cheol Koh
H. S. Lee
S. H. Lee
+ Pulse Shape Discrimination of low-energy nuclear and electron recoils for improved particle identification in NaI:Tl 2022 N. J. Spinks
L. J. Bignell
G. J. Lane
A. Akber
E. Barberio
T. Baroncelli
B. J. Coombes
J. T. H. Dowie
T. K. Eriksen
M. S. M. Gerathy
+ PDF Chat Measurement of the sodium and iodine scintillation quenching factors across multiple NaI(Tl) detectors to identify systematics 2024 D. Cintas
S. Hedges
W. G. Thompson
Peng An
C. Awe
P. S. Barbeau
E. Barbosa de Souza
J. H. Jo
L. Li
M. MartĂ­nez
+ PDF Chat Absolute light yield measurement of NaI:Tl crystals for dark matter search 2024 Nguyễn Thành Luân
Kim Hong Joo
Lee Hyun Su
Jin Jegal
L. T. Truc
Khan Arshad
N. Ton

Citing (0)

Action Title Year Authors