Effective Bounds for Restricted $3$-Arithmetic Progressions in $\mathbb{F}_p^n$

Type: Preprint

Publication Date: 2023-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.2308.06600

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Asymptotic upper bounds on progression-free sets in $\mathbb{Z}_p^n$ 2016 Dion Gijswijt
+ Large Subsets of $\mathbb{Z}_m^n$ without Arithmetic Progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ PDF Chat More on maximal line-free sets in $\mathbb{F}_p^n$ 2024 Jakob FĂŒhrer
+ New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$ 2024 Christian Elsholtz
Laura Proske
Lisa Sauermann
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
PĂ©ter PĂĄl Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
PĂ©ter PĂĄl Pach
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
PĂ©ter PĂĄl Pach
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
PĂ©ter PĂĄl Pach
+ PDF Chat The $3k-4$ Theorem modulo a Prime: High Density for $A+B$ 2024 David J. Grynkiewicz
+ The large $k$-term progression-free sets in $\mathbb{Z}_q^n$ 2016 Hongze Li
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 GĂĄbor HegedĂŒs
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 GĂĄbor HegedĂŒs
+ Three-term arithmetic progressions in subsets of $\mathbb{F}_q^{\infty}$ of large Fourier dimension 2020 Robert Fraser
+ Three-term arithmetic progressions in subsets of $\mathbb{F}_q^{\infty}$ of large Fourier dimension 2020 Robert Fraser
+ The large progression-free sets in Z_q^n 2016 Hongze Li
+ On restricted arithmetic progressions over finite fields 2012 Brian Cook
Ákos Magyar
+ On restricted arithmetic progressions over finite fields 2010 Brian J. Cook
Ákos Magyar
+ A note on the large progression-free sets in Z_q^n 2016 Hongze Li
+ PDF Chat Sets of Integers that do not Contain Long Arithmetic Progressions 2011 Kevin O’Bryant

Works That Cite This (1)

Action Title Year Authors
+ On Approximability of Satisfiable k-CSPs: IV 2024 Amey Bhangale
Subhash Khot
Dor Minzer

Works Cited by This (0)

Action Title Year Authors