Topological Regularity for Solutions to the Generalised Hopf Equation

Type: Article

Publication Date: 2023-08-02

Citations: 0

DOI: https://doi.org/10.1007/s11785-023-01390-4

Abstract

Abstract The generalised Hopf equation is the first order nonlinear equation defined on a planar domain $$\Omega \subset {\mathbb {C}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ω</mml:mi><mml:mo>⊂</mml:mo><mml:mi>C</mml:mi></mml:mrow></mml:math> , with data $$\Phi $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Φ</mml:mi></mml:math> a holomorphic function and $$\eta \ge 1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>η</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> a positive weight on $$\Omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ω</mml:mi></mml:math> , $$\begin{aligned} h_w\,\overline{h_{\overline{w}}}\,\eta (w) = \Phi . \end{aligned}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtable><mml:mtr><mml:mtd><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>w</mml:mi></mml:msub><mml:mspace /><mml:mover><mml:msub><mml:mi>h</mml:mi><mml:mover><mml:mi>w</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:msub><mml:mo>¯</mml:mo></mml:mover><mml:mspace /><mml:mi>η</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>w</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>Φ</mml:mi><mml:mo>.</mml:mo></mml:mrow></mml:mtd></mml:mtr></mml:mtable></mml:mrow></mml:math> The Hopf equation is the special case $$\eta (w)={\tilde{\eta }}(h(w))$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>η</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>w</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mover><mml:mi>η</mml:mi><mml:mo>~</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>h</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>w</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> and reflects that h is harmonic with respect to the conformal metric $$\sqrt{{\tilde{\eta }}(z)}|dz|$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mrow><mml:mover><mml:mi>η</mml:mi><mml:mo>~</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>z</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msqrt><mml:mrow><mml:mo>|</mml:mo><mml:mi>d</mml:mi><mml:mi>z</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:mrow></mml:math> , usually $$\eta $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>η</mml:mi></mml:math> is the hyperbolic metric. This article obtains conditions on the data to ensure that a solution is open and discrete. We also prove a strong uniqueness result.

Locations

  • Complex Analysis and Operator Theory - View - PDF

Similar Works

Action Title Year Authors
+ Topological regularity for solutions to the generalised Hopf equation 2023 Gaven Martin
Cong Yao
+ PDF Chat Topological regularity for solutions to the generalised Hopf equation. 2023 Gaven Martin
Cong Yao
+ Regularity for solutions of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si8.svg"><mml:mi>H</mml:mi></mml:math>-systems and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e27" altimg="si9.svg"><mml:mi>n</mml:mi></mml:math>-harmonic maps with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e32" altimg="si10.svg"><mml:mrow><mml:mi>n</mml:mi><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:… 2023 Michał Miśkiewicz
Bogdan Petraszczuk
Paweł Strzelecki
+ PDF Chat Hopf Differentials and Smoothing Sobolev Homeomorphisms 2011 Tadeusz Iwaniec
Leonid V. Kovalev
Jani Onninen
+ An estimate of the Hopf degree of fractional Sobolev mappings 2020 Armin Schikorra
Jean Van Schaftingen
+ Partial regularity of 𝑝(𝑥)-harmonic maps 2012 Maria Alessandra Ragusa
Atsushi Tachikawa
Hiroshi Takabayashi
+ PDF Chat Global Regularity for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mo>∂</mml:mo></mml:mrow><mml:mo>-</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>-Equation on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi>C</mml:mi><mml:mi>R</mml:mi></mml:math>Manifolds of Arbitrary Codimension 2014 Shaban Khidr
Osama Abdelkader
+ Geometric<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e19" altimg="si2.gif"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mi>α</mml:mi></mml:mrow></mml:msup></mml:math>regularity estimates for nonlinear evolution models 2019 João Vítor da Silva
+ Regularity of weak solutions to the Monge–Ampère equation 2003 Cristian E. Gutiérrez
David Hartenstine
+ PDF Chat Strauss’s Radial Compactness and Nonlinear Elliptic Equation Involving a Variable Critical Exponent 2018 Masato Hashizume
Megumi Sano
+ PDF Chat A New Approach to the Existence of Quasiperiodic Solutions for Second-Order Asymmetric <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math>-Laplacian Differential Equations 2018 Xiaoming Wang
Lixia Wang
+ An 𝐿^{𝑝} regularity theory for harmonic maps 2014 Roger Moser
+ 𝑞-Chaos 2011 Marius Junge
Hun Hee Lee
+ PDF Chat A note on Hopf’s lemma and strong minimum principle for nonlocal equations with non-standard growth 2023 Abhrojyoti Sen
+ PDF Chat Regularity of Fourier integral operators with amplitudes in general Hörmander classes 2021 Alejandro J. Castro
Anders Wimo
Wolfgang Staubach
+ PDF Chat A non-smooth Brezis-Oswald uniqueness result 2023 Sunra Mosconi
+ A generalization of the Hopf degree theorem 2022 Matthew D. Kvalheim
+ Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors 2010 Martin Meyries
+ Harmonic Maps 1998 Thierry Aubin
+ PDF Chat High Order Fefferman-Phong Type Inequalities in Carnot Groups and Regularity for Degenerate Elliptic Operators plus a Potential 2014 Pengcheng Niu
Kelei Zhang

Works That Cite This (0)

Action Title Year Authors