A framework based on symbolic regression coupled with eXtended Physics-Informed Neural Networks for gray-box learning of equations of motion from data

Type: Article

Publication Date: 2023-07-25

Citations: 10

DOI: https://doi.org/10.1016/j.cma.2023.116258

Locations

  • Computer Methods in Applied Mechanics and Engineering - View - PDF
  • arXiv (Cornell University) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View

Similar Works

Action Title Year Authors
+ A Framework Based on Symbolic Regression Coupled with eXtended Physics-Informed Neural Networks for Gray-Box Learning of Equations of Motion from Data 2023 Elham Kiyani
Khemraj Shukla
George Em Karniadakis
Mikko Karttunen
+ Contemporary Symbolic Regression Methods and their Relative Performance 2021 William La Cava
Patryk Orzechowski
Bogdan Burlacu
Fabrício Olivetti de França
Marco Virgolin
Ying Jin
Michael Kommenda
Jason H. Moore
+ Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery 2019 Samuel Kim
Peter Y. Lu
Srijon Mukherjee
Michael A. Gilbert
Jing Li
Vladimir Čeperić
Marin Soljačić
+ PDF Chat Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery 2020 Samuel Kim
Peter Y. Lu
Srijon Mukherjee
Michael A. Gilbert
Li Jing
Vladimir Čeperić
Marin Soljačić
+ PDF Chat Smooth Symbolic Regression: Transformation of Symbolic Regression into a Real-Valued Optimization Problem 2015 Erik Pitzer
Gabriel Kronberger
+ Interpretable Neural PDE Solvers using Symbolic Frameworks 2023 Yolanne Yi Ran Lee
+ Fast Neural Models for Symbolic Regression at Scale 2020 Allan dos Santos Costa
Rumen Dangovski
Owen Dugan
Samuel Kim
Pawan Goyal
Marin Soljačić
Joseph M. Jacobson
+ ParFam -- Symbolic Regression Based on Continuous Global Optimization 2023 Philipp M. Scholl
Katharina Bieker
Hillary Hauger
Gitta Kutyniok
+ Deep Learning and Symbolic Regression for Discovering Parametric Equations 2022 Michael Zhang
Samuel Kim
Peter Y. Lu
Marin Soljačić
+ PDF Chat Deep Learning and Symbolic Regression for Discovering Parametric Equations 2023 Michael Zhang
Samuel Kim
Peter Y. Lu
Marin Soljačić
+ AI Feynman: a Physics-Inspired Method for Symbolic Regression 2019 Silviu‐Marian Udrescu
Max Tegmark
+ SyReNets: Symbolic Residual Neural Networks 2021 Carlos Valle
Sami Haddadin
+ PDF Chat AI Feynman: A physics-inspired method for symbolic regression 2020 Silviu‐Marian Udrescu
Max Tegmark
+ Symplectically Integrated Symbolic Regression of Hamiltonian Dynamical Systems 2022 Daniel M. DiPietro
Bo Zhu
+ Knowledge-Based Deep Learning for Time-Efficient Inverse Dynamics 2025 Shuhao Ma
Yu Cao
I.D. Robertson
Chaoyang Shi
Jindong Liu
Zhiqiang Zhang
+ PDF Chat A metalearning approach for Physics-Informed Neural Networks (PINNs): Application to parameterized PDEs 2023 Michael Penwarden
Shandian Zhe
Akil Narayan
Robert M. Kirby
+ SyReNets: Symbolic Residual Neural Networks. 2021 Carlos Valle
Sami Haddadin
+ PDF Chat ViSymRe: Vision-guided Multimodal Symbolic Regression 2024 Da Li
Junping Yin
Jin Xu
Xinxin Li
Juan Zhang
+ PDF Chat Physics guided neural networks for modelling of non-linear dynamics 2022 Haakon Robinson
Suraj Pawar
Adil Rasheed
Omer San
+ AI-Lorenz: A physics-data-driven framework for black-box and gray-box identification of chaotic systems with symbolic regression 2023 Mario De Florio
Ioannis G. Kevrekidis
George Em Karniadakis