FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation

Type: Preprint

Publication Date: 2023-07-23

Citations: 1

DOI: https://doi.org/10.22541/essoar.169008319.96252512/v1

Abstract

Emulators, or reduced complexity climate models, are surrogate Earth system models that produce projections of key climate quantities with minimal computational resources. Using time-series modelling or more advanced machine learning techniques, data-driven emulators have emerged as a promising avenue of research, producing spatially resolved climate responses that are visually indistinguishable from state-of-the-art Earth system models. Yet, their lack of physical interpretability limits their wider adoption. In this work, we introduce FaIRGP, a data-driven emulator that satisfies the physical temperature response equations of an energy balance model. The result is an emulator that (i) enjoys the flexibility of statistical machine learning models and can learn from observations, and (ii) has a robust physical grounding with interpretable parameters that can be used to make inference about the climate system. Further, our Bayesian approach allows a principled and mathematically tractable uncertainty quantification. Our model demonstrates skillful emulation of global mean surface temperature and spatial surface temperatures across realistic future scenarios. Its ability to learn from data allows it to outperform energy balance models, while its robust physical foundation safeguards against the pitfalls of purely data-driven models. We also illustrate how FaIRGP can be used to obtain estimates of top-of-atmosphere radiative forcing and discuss the benefits of its mathematical tractability for applications such as detection and attribution or precipitation emulation. We hope that this work will contribute to widening the adoption of data-driven methods in climate emulation.

Locations

  • arXiv (Cornell University) - View - PDF
  • Authorea (Authorea) - View - PDF
  • Oxford University Research Archive (ORA) (University of Oxford) - View - PDF

Similar Works

Action Title Year Authors
+ FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation 2023 Shahine Bouabid
Dino Sejdinović
Duncan Watson‐Parris
+ PDF Chat FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation 2024 Shahine Bouabid
Dino Sejdinović
Duncan Watson‐Parris
+ Global Temperature Projections from a Statistical Energy Balance Model Using Multiple Sources of Historical Data 2023 Mikkel Bennedsen
Eric Hillebrand
Jingying Zhou Lykke
+ Next-Generation Earth System Models: Towards Reliable Hybrid Models for Weather and Climate Applications 2023 Tom Beucler
Erwan Koch
Sven Kotlarski
David Leutwyler
Adrien Michel
Jonathan Koh
+ Global temperature projections from a statistical energy balance model using multiple sources of historical data 2022 Mikkel Bennedsen
Eric Hillebrand
Jingying Zhou Lykke
+ PDF Chat Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator 2021 Duncan Watson‐Parris
Andrew Williams
Lucia Deaconu
Philip Stier
+ Model calibration using ESEm v1.0.0 – an open, scalable Earth System Emulator 2021 Duncan Watson‐Parris
Andrew Williams
Lucia Deaconu
Philip Stier
+ PDF Chat Machine Learning for the Physics of Climate 2024 Annalisa Bracco
Julien Brajard
Henk A. Dijkstra
Pedram Hassanzadeh
Christian Lessig
Claire Monteleoni
+ PDF Chat Parameter Uncertainty Quantification in an Idealized GCM With a Seasonal Cycle 2022 Michael F. Howland
Oliver R. A. Dunbar
Tapio Schneider
+ Model calibration using ESEm v1.0.0 -- an open, scalable Earth System Emulator 2021 Duncan Watson‐Parris
Andrew Williams
Lucia Deaconu
Philip Stier
+ Climate-Invariant Machine Learning 2021 Tom Beucler
Michael S. Pritchard
Janni Yuval
Ankitesh Gupta
Liran Peng
Stephan Rasp
Fiaz Ahmed
Paul A. O’Gorman
J. David Neelin
Nicholas J. Lutsko
+ PDF Chat Climate-invariant machine learning 2024 Tom Beucler
Pierre Gentine
Janni Yuval
Ankitesh Gupta
Liran Peng
Jerry Lin
Sungduk Yu
Stephan Rasp
Fiaz Ahmed
Paul A. O’Gorman
+ ACE: A fast, skillful learned global atmospheric model for climate prediction 2023 Oliver Watt‐Meyer
Gideon Dresdner
Jeremy McGibbon
Spencer K. Clark
Brian Henn
John S. Duncan
Noah Brenowitz
Karthik Kashinath
Michael S. Pritchard
Boris Bonev
+ PDF Chat A Deep Learning Earth System Model for Stable and Efficient Simulation of the Current Climate 2024 Nathaniel Cresswell‐Clay
Bowen Liu
Dale R. Durran
Andy Liu
Zachary I. Espinosa
RaĂșl Moreno
Matthias Karlbauer
+ PDF Chat Recommendations for Comprehensive and Independent Evaluation of Machine Learning-Based Earth System Models 2024 Paul Ullrich
Elizabeth A. Barnes
William D. Collins
Katherine Dagon
Shiheng Duan
Joe D. Elms
Jiwoo Lee
L. Ruby Leung
Dan Lu
MarĂ­a J. Molina
+ Meta-modeling strategy for data-driven forecasting 2020 Dominic J. Skinner
Romit Maulik
+ Meta-modeling strategy for data-driven forecasting 2020 Dominic J. Skinner
Romit Maulik
+ PDF Chat PACER: Physics Informed Uncertainty Aware Climate Emulator 2024 Hira Saleem
Flora D. Salim
Cormac Purcell
+ Finding the Perfect Fit: Applying Regression Models to ClimateBench v1.0 2023 Anmol Chaure
Ashok Behera
Sudip Bhattacharya
+ PDF Chat Separating internal and externally forced contributions to global temperature variability using a Bayesian stochastic energy balance framework 2022 Maybritt Schillinger
Beatrice Ellerhoff
Robert Scheichl
Kira Rehfeld

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (10)

Action Title Year Authors
+ Changes in Atmospheric Constituents and in Radiative Forcing 2007 Piers M. Forster
V. Ramaswamy
Paulo Artaxo
Terje K. Berntsen
Richard Betts
D. W. Fahey
Jim Haywood
J. Lean
David C. Lowe
Gunnar Myhre
+ Global space–time models for climate ensembles 2013 Stefano Castruccio
Michael L. Stein
+ PDF Chat Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity 1967 Syukuro Manabe
R. T. Wetherald
+ PDF Chat Long-Range Persistence in Global Surface Temperatures Explained by Linear Multibox Energy Balance Models 2017 Hege‐Beate Fredriksen
Martin Rypdal
+ GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration 2018 Jacob R. Gardner
Geoff Pleiss
David Bindel
Kilian Q. Weinberger
Andrew Gordon Wilson
+ Hyperparameter Learning via Distributional Transfer 2018 Ho Chung Leon Law
Peilin Zhao
Junzhou Huang
Dino Sejdinović
+ The fractional energy balance equation 2021 S. Lovejoy
Roman Procyk
Raphaël Hébert
Lenin Del Rio Amador
+ PDF Chat Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods 2021 Eyke HĂŒllermeier
Willem Waegeman
+ Exact Gaussian Processes on a Million Data Points 2019 Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
Andrew Gordon Wilson
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga