Orbital stability and instability of periodic wave solutions for ϕ4n -models

Type: Article

Publication Date: 2023-03-24

Citations: 0

DOI: https://doi.org/10.1088/1361-6544/acc3ef

Abstract

Abstract In this work we study the orbital stability/instability in the energy space of a specific family of periodic wave solutions of the general <?CDATA $\phi^{4n}$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msup> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> </mml:math> -model for all <?CDATA $n\in\mathbb{N}$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant="double-struck">N</mml:mi> </mml:mrow> </mml:math> . This family of periodic solutions are orbiting around the origin in the corresponding phase portrait and, in the standing case, are related (in a proper sense) with the aperiodic Kink solution that connect the states <?CDATA $-\tfrac{v}{2}$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo>−</mml:mo> <mml:mstyle> <mml:mfrac> <mml:mi>v</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mstyle> </mml:math> with <?CDATA $\tfrac{v}{2}$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mstyle> <mml:mfrac> <mml:mi>v</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mstyle> </mml:math> . In the traveling case, we prove the orbital instability in the whole energy space for all <?CDATA $n\in\mathbb{N}$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant="double-struck">N</mml:mi> </mml:mrow> </mml:math> , while in the standing case we prove that, under some additional parity assumptions, these solutions are orbitally stable for all <?CDATA $n\in\mathbb{N}$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant="double-struck">N</mml:mi> </mml:mrow> </mml:math> . Furthermore, as a by-product of our analysis, we are able to extend the main result in (de Loreno and Natali 2020 arXiv: 2006.01305 ) (given for a different family of equations) to traveling wave solutions in the whole space, for all <?CDATA $n\in\mathbb{N}$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant="double-struck">N</mml:mi> </mml:mrow> </mml:math> .

Locations

Similar Works

Action Title Year Authors
+ Orbital stability and instability of periodic wave solutions for $ϕ^{4n}$-models 2020 Gong Chen
José M. Palacios
+ PDF Chat Orbital stability and instability of periodic wave solutions for the $$\phi ^4$$-model 2022 José M. Palacios
+ Orbital stability and instability of periodic wave solutions for the $ϕ^4$-model 2020 J.M. Palacios
+ PDF Chat Stability of periodic waves in Hamiltonian PDEs 2014 Sylvie Benzoni-Gavage
Pascal Noble
L. Miguel Rodrigues
+ Orbital Stability of Periodic Traveling Wave Solutions 2011 Jaime Angulo Pava
Fbio Natali
+ PDF Chat Periodic orbits of 𝑛-body type problems: the fixed period case 1995 Hasna Riahi
+ PDF Chat Nonlinear Stability of Periodic Traveling Wave Solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mi> </mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>-Dimensional Coupled Nonlinear Klein-Gordon Equations 2015 Cong Sun
Bo Jiang
+ PDF Chat Periodic solutions of 𝑥”+𝑔(𝑥)+𝜇ℎ(𝑥)=0 1974 G. J. Butler
H. I. Freedman
+ PDF Chat Positive Periodic Solutions in Shifts<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mi>δ</mml:mi></mml:mrow><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math>for a Class of Higher-Dimensional Functional Dynamic Equations with Impulses on Time Scales 2014 Meng Hu
Lili Wang
Zhigang Wang
+ Spectral stability of periodic wave trains of the Korteweg-de Vries/Kuramoto-Sivashinsky equation in the Korteweg-de Vries limit 2014 Mathew A. Johnson
Pascal Noble
Luı́s Rodrigues
Kevin Zumbrun
+ PDF Chat Periodic Wave Solutions and Their Limit Forms of the Modified Novikov Equation 2015 Qing Meng
Bin He
+ PDF Chat Periodic solutions for a class of ordinary differential equations 1980 James Ward
+ Stability of Periodic Billiard Trajectories in Triangle 2018 Александр Николаевич Кириллов
R. V. Alkin
+ Orbital stability of periodic traveling waves in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.svg" display="inline" id="d1e79"><mml:mi>b</mml:mi></mml:math>-Camassa–Holm equation 2024 Brett Ehrman
Mathew A. Johnson
+ PDF Chat Periodic solutions of perturbed conservative systems 1978 James Ward
+ PDF Chat bd𝑊 contains the unstable set of the periodic orbit 𝒪 1998 Tibor Krisztin
Hans‐Otto Walther
Jian Wu
+ Periodic solutions of 𝑥”+𝑐𝑥’+𝑔(𝑥)=𝜖𝑓(𝑡) 1959 W. S. Loud
+ Periodic orbits stability and resonances (Recensione) 1971 Giulio Calamai
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian equations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:math> with periodic data and nonperiodic perturbations 2007 Xianling Fan
+ Existence of periodic solutions in the modified Wheldon model of CML 2013 Pablo Amster
Rocío Balderrama
Lev Idels

Works That Cite This (0)

Action Title Year Authors