Kondo effect in defect-bound quantum dots coupled to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NbSe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>

Type: Article

Publication Date: 2023-03-06

Citations: 1

DOI: https://doi.org/10.1103/physrevb.107.094502

Abstract

We report the fabrication of a van der Waals tunneling device hosting a defect-bound quantum dot coupled to ${\mathrm{NbSe}}_{2}$. We find that upon application of a magnetic field, the device exhibits a zero-bias conductance peak. The peak, which splits at higher fields, is associated with a Kondo effect. At the same time, the junction retains conventional quasiparticle tunneling features at finite bias. Such coexistence of a superconducting gap and a Kondo effect are unusual, and are explained by noting the two-gap nature of the superconducting state of ${\mathrm{NbSe}}_{2}$, where a magnetic field suppresses the low-energy gap associated with the Se band. Our data shows that van der Waals architectures, and defect-bound dots in them, can serve as an effective platform for investigating the interplay of Kondo screening and superconducting pairing in unconventional superconductors.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Kondo Effect in Defect-bound Quantum Dots Coupled to NbSe$_2$ 2022 T. R. Devidas
Tom Dvir
Enrico Rossi
Hadar Steinberg
+ PDF Chat Zeeman Tunability of Andreev Bound States in van der Waals Tunnel Barriers 2019 Tom Dvir
Marco Aprili
C. H. L. Quay
Hadar Steinberg
+ PDF Chat Spin-polarized supercurrent through the van der Waals Kondo-lattice ferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>GeTe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> 2022 Deepti Rana
R Aswini
G. Basavaraja
Chandan Patra
Sandeep Howlader
Rajeswari Roy Chowdhury
Mukul Kabir
R. P. Singh
Goutam Sheet
+ Kondo Effect in a Quantum-Dot-Topological-Superconductor Junction 2012 Min Chul Lee
Jong Soo Lim
Heunghwan Khim
Rosa López
+ PDF Chat Unconventional Josephson junctions with topological Kondo insulator weak links 2019 Xuecheng Ye
Jacob Cook
Erik Huemiller
A. D. K. Finck
Pouyan Ghaemi
Thomas Vojta
Vivekananda P. Adiga
Shanta Saha
Johnpierre Paglione
Cihan Kurter
+ Hard superconducting gap and vortex-state spectroscopy in NbSe$_2$ van der Waals tunnel junctions 2017 Tom Dvir
Freek Massee
Lotan Attias
Maxim Khodas
M. Aprili
C. H. L. Quay
Hadar Steinberg
+ Hard superconducting gap and vortex-state spectroscopy in NbSe$_2$ van der Waals tunnel junctions 2017 Tom Dvir
Freek Massee
Lotan Attias
Maxim Khodas
M. Aprili
C. H. L. Quay
Hadar Steinberg
+ Coherent exchange-coupled nonlocal Kondo impurities 2023 Lidia Stocker
Oded Zilberberg
+ Origin of subgap states in normal-insulator-superconductor van der Waals heterostructures 2022 Paritosh Karnatak
Zarina Mingazheva
Kenji Watanabe
Takashi Taniguchi
H. Berger
Lászlø Forró
Christian Schönenberger
+ PDF Chat Subgap states in semiconductor-superconductor devices for quantum technologies: Andreev qubits and minimal Majorana chains 2024 Rubén Seoane Souto
Ramón Aguado
+ PDF Chat Spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math>Kondo effect in an InAs nanowire quantum dot: Unitary limit, conductance scaling, and Zeeman splitting 2011 Andrey V. Kretinin
Hadas Shtrikman
David Goldhaber‐Gordon
M. Hanl
Andreas Weichselbaum
Jan von Delft
T. A. Costi
D. Mahalu
+ PDF Chat Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks 2017 Chun-Xiao Liu
Jay D. Sau
Tudor D. Stanescu
S. Das Sarma
+ Kondo Correlation Induced Low-Field Magnetoresistance Anomalies in InSb Nanowire Josephson Quantum Dot Devices 2018 Chunlin Yu
M. T. Deng
Philippe Caroff
Sepideh Gorji Ghalamestani
Kimberly A. Dick
H. Q. Xu
+ One-dimensional topological superconductivity in a van der Waals heterostructure 2023 Jose Martinez‐Castro
Tobias Wichmann
Keda Jin
Tomáš Samuely
Zhongkui Lyu
Jiaqiang Yan
Oleksander Onufriienko
P. Szabó
F. Stefan Tautz
Markus Ternes
+ Origin of Subgap States in Normal-Insulator-Superconductor van der Waals Heterostructures 2023 Paritosh Karnatak
Zarina Mingazheva
Kenji Watanabe
Takashi Taniguchi
H. Berger
L. Forró
Christian Schönenberger
+ PDF Chat Spectroscopy of NbSe<sub>2</sub> Using Energy-Tunable Defect-Embedded Quantum Dots 2021 T. R. Devidas
Itai Keren
Hadar Steinberg
+ PDF Chat Kondo induced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>π</mml:mi></mml:math> -phase shift of microwave photons in a circuit quantum electrodynamics architecture 2021 Guangwei Deng
Loïc Henriet
Da Wei
Shuxiao Li
Hai-Ou Li
Gang Cao
Ming Xiao
Guang‐Can Guo
Marco Schirò
Karyn Le Hur
+ PDF Chat Topological nature of the Kondo insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sm</mml:mi><mml:msub><mml:mi mathvariant="normal">B</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math> and its sensitiveness to Sm vacancy 2021 W. K. Park
Jennifer Sittler
L. H. Greene
Wesley Fuhrman
Juan R. Chamorro
S. M. Koohpayeh
W. Adam Phelan
Tyrel M. McQueen
+ Kondo Correlation Induced Low-Field Magnetoresistance Anomalies in InSb Nanowire Josephson Quantum Dot Devices 2018 C. L. Yu
M. T. Deng
P. Caroff
S. G. Ghalamestani
K. A. Dick
H. Q. Xu
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>0</mml:mn><mml:mtext>−</mml:mtext><mml:mi>π</mml:mi></mml:math> phase transition in hybrid superconductor–InSb nanowire quantum dot devices 2017 Sen Li
Ning Kang
Philippe Caroff
H. Q. Xu