Quantifying the LiDAR Sim-to-Real Domain Shift: A Detailed Investigation Using Object Detectors and Analyzing Point Clouds at Target-Level

Type: Article

Publication Date: 2023-03-02

Citations: 15

DOI: https://doi.org/10.1109/tiv.2023.3251650

Abstract

LiDAR object detection algorithms based on neural networks for autonomous driving require large amounts of data for training, validation, and testing. As real-world data collection and labeling are time-consuming and expensive, simulation-based synthetic data generation is a viable alternative. However, using simulated data for the training of neural networks leads to a domain shift of training and testing data due to differences in scenes, scenarios, and distributions. In this work, we quantify the sim-to-real domain shift by means of LiDAR object detectors trained with a new scenario-identical real-world and simulated dataset. In addition, we answer the questions of how well the simulated data resembles the real-world data and how well object detectors trained on simulated data perform on real-world data. Further, we analyze point clouds at the target-level by comparing real-world and simulated point clouds within the 3D bounding boxes of the targets. Our experiments show that a significant sim-to-real domain shift exists even for our scenario-identical datasets. This domain shift amounts to an average precision reduction of around <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$14 \,\%$</tex-math></inline-formula> for object detectors trained with simulated data. Additional experiments reveal that this domain shift can be lowered by introducing a simple noise model in simulation. We further show that a simple downsampling method to model real-world physics does not influence the performance of the object detectors.

Locations

  • IEEE Transactions on Intelligent Vehicles - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Understanding the Domain Gap in LiDAR Object Detection Networks 2022 Jasmine Richter
Florian Faion
Di Feng
Paul Benedikt Becker
Piotr Sielecki
Claudius Glaeser
+ PDF Chat SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation 2021 Qiangeng Xu
Yin Zhou
Weiyue Wang
Charles R. Qi
Dragomir Anguelov
+ SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation 2021 Qiangeng Xu
Yin Zhou
Weiyue Wang
Charles R. Qi
Dragomir Anguelov
+ Real-Time and Robust 3D Object Detection Within Road-Side LiDARs Using Domain Adaptation 2022 Walter Zimmer
Marcus Grabler
Alois Knoll
+ PDF Chat Revisiting Out-of-Distribution Detection in LiDAR-based 3D Object Detection 2024 Michael Kösel
Marcel Schreiber
Michaël Ulrich
Claudius GlÀser
Klaus Dietmayer
+ LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection 2023 Fang Jin
Dingfu Zhou
Jingjing Zhao
Chulin Tang
Cheng‐Zhong Xu
Liangjun Zhang
+ PDF Chat Exploring Domain Shift on Radar-Based 3D Object Detection Amidst Diverse Environmental Conditions 2024 Miao Zhang
Sherif Abdulatif
Benedikt Loesch
Marco Altmann
Marius Schwarz
Bin Yang
+ PDF Chat Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing Simulation-to-Real Domain Shift in LiDAR Bird's Eye View 2021 Alejandro Barrera
Jorge BeltrĂĄn
Carlos Guindel
José Antonio Iglesias
Fernando GarcĂ­a
+ Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing Simulation-to-Real Domain Shift in LiDAR Bird's Eye View 2021 Alejandro Barrera
Jorge BeltrĂĄn
Carlos Guindel
José Antonio Iglesias
Fernando GarcĂ­a
+ Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing Simulation-to-Real Domain Shift in LiDAR Bird's Eye View. 2021 Alejandro Barrera
Jorge BeltrĂĄn
Carlos Guindel
José Antonio Iglesias
Fernando GarcĂ­a
+ PDF Chat ParisLuco3D: A High-Quality Target Dataset for Domain Generalization of LiDAR Perception 2024 Jules Sanchez
Louis Soum-Fontez
Jean‐Emmanuel Deschaud
François Goulette
+ PDF Chat Pattern-Aware Data Augmentation for LiDAR 3D Object Detection 2021 Jordan S. K. Hu
Steven L. Waslander
+ Simulation-to-Reality domain adaptation for offline 3D object annotation on pointclouds with correlation alignment 2022 Weishuang Zhang
B Ravi Kiran
Thomas Gauthier
Yanis Mazouz
Theo Steger
+ Simulation-to-Reality Domain Adaptation for Offline 3D Object Annotation on Pointclouds with Correlation Alignment 2022 Weishuang Zhang
Bangalore Ravi Kiran
Thomas Gauthier
Yanis Mazouz
Theo Steger
+ PDF Chat An Empirical Study of the Generalization Ability of Lidar 3D Object Detectors to Unseen Domains 2024 George Eskandar
Chongzhe Zhang
Abhishek Kaushik
Karim Guirguis
Mohamed Sayed
Bin Yang
+ Influence of Camera-LiDAR Configuration on 3D Object Detection for Autonomous Driving 2023 Ye Li
Hanjiang Hu
Zuxin Liu
Ding Zhao
+ ParisLuco3D: A high-quality target dataset for domain generalization of LiDAR perception 2023 Jules Sanchez
Louis Soum-Fontez
Jean‐Emmanuel Deschaud
François Goulette
+ PDF Chat LEROjD: Lidar Extended Radar-Only Object Detection 2024 Patrick Palmer
Martin KrĂŒger
Stefan SchĂŒtte
Richard Altendorfer
Ganesh Adam
Torsten Bertram
+ Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection 2023 Qianjiang Hu
Daizong Liu
Wei Hu
+ PDF Chat Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection 2023 Qianjiang Hu
Daizong Liu
Wei Hu

Works Cited by This (27)

Action Title Year Authors
+ PDF Chat Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes 2018 Hassan Abu Alhaija
Siva Karthik Mustikovela
Lars Mescheder
Andreas Geiger
Carsten Rother
+ A LiDAR Point Cloud Generator: from a Virtual World to Autonomous Driving 2018 Xiangyu Yue
Bichen Wu
Sanjit A. Seshia
Kurt Keutzer
Alberto Sangiovanni‐Vincentelli
+ Similarity of Neural Network Representations Revisited 2019 Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
+ PDF Chat PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud 2019 Shaoshuai Shi
Xiaogang Wang
Hongsheng Li
+ How much real data do we actually need: Analyzing object detection performance using synthetic and real data 2019 Farzan Erlik Nowruzi
Prince Kapoor
Dhanvin Kolhatkar
Fahed Al Hassanat
Robert LaganiĂšre
Julien Rebut
+ PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space 2017 Charles R. Qi
Yi Li
Hao Su
Leonidas Guibas
+ PDF Chat Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization 2018 Jonathan Tremblay
Aayush Prakash
David Acuna
Mark Brophy
Varun Jampani
Cem Anil
Thang To
Eric Cameracci
Shaad Boochoon
Stan Birchfield
+ PDF Chat Understanding how image quality affects deep neural networks 2016 Samuel Dodge
Lina J. Karam
+ PDF Chat PointPillars: Fast Encoders for Object Detection From Point Clouds 2019 Alex Lang
Sourabh Vora
Holger Caesar
Lubing Zhou
Jiong Yang
Oscar Beijbom
+ PDF Chat Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data 2019 Aayush Prakash
Shaad Boochoon
Mark Brophy
David Acuna
Eric Cameracci
Gavriel State
Omer Shapira
Stan Birchfield