Exponential sampling with a multiplier

Type: Article

Publication Date: 2023-02-09

Citations: 1

DOI: https://doi.org/10.1007/s43670-023-00048-8

Abstract

Abstract The exponential sampling formula has some limitations. By incorporating a Mellin bandlimited multiplier, we extend it to a wider class of functions with a series that converges faster. This series is a generalized exponential sampling series with some interesting properties. Moreover, under a side condition, any generalized exponential sampling series that is interpolating can be generated by a Mellin bandlimited multiplier. For an error analysis, we consider a truncated series with $$2N+1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> terms and look for a highest speed of convergence as $$N\rightarrow \infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>→</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> . We show by using a certain non-bandlimited multiplier, which introduces in addition an aliasing error, that we can achieve a higher rate of convergence to the function, namely $$\mathcal {O}(e^{-\alpha N})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>α</mml:mi> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> with $$\alpha &gt;0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , than with the truncated series of an exact formula. The results are illustrated by three examples.

Locations

  • Sampling Theory Signal Processing and Data Analysis - View - PDF

Similar Works

Action Title Year Authors
+ An exponential interpolation series 1968 William Edward Howell
+ A Modification of the Sampling Series with a Gaussian Multiplier 2006 Liwen Qian
Dennis B. Creamer
+ A Bessel function multiplier 1999 Daniel M. Oberlin
Hart F. Smith
+ A variant of the Hankel multiplier 2017 Saifallah Ghobber
+ PDF Chat The Hilbert transform with exponential weights 1992 Leonardo Colzani
M. Vignati
+ PDF Chat Filter Functions with Exponential Convergence Order 1994 Robert Denk
+ A generalization of the exponential sampling series and its approximation properties 2016 Carlo Bardaro
Loris Faina
Ilaria Mantellını
+ A generalization of the exponential sampling series and its approximation properties 2016 Carlo Bardaro
Loris Faina
Ilaria Mantellini
+ Nonlinear Exponential Sampling: Approximation Results and Applications 2024 Danilo Costarellı
+ Accelerating the convergence of a two-dimensional periodic nonuniform sampling series through the incorporation of a bivariate Gaussian multiplier 2024 R. M. Asharabi
Somaia M. Alhazmi
+ Interpolation by Generalized Exponential Series 2021 S. G. Merzlyakov
+ PDF Chat A multiplier theorem for Fourier transforms 1974 James Dougal Mccall
+ PDF Chat A generalization of the exponential sampling series and its approximation properties 2017 Carlo Bardaro
Loris Faina
Ilaria Mantellını
+ PDF Chat Improving Fourier Partial Sum Approximation for Discontinuous Functions Using a Weight Function 2017 Beong In Yun
+ Classical and Approximate Exponential Sampling Formula: Their Interconnections in Uniform and Mellin–Lebesgue Norms 2023 Carlo Bardaro
P. L. Butzer
Ilaria Mantellini
Gerhard Schmeißer
R. L. Stens
+ On sampling theorems for fractional Fourier transforms and series 2017 Ahmed I. Zayed
+ An Exact Logarithmic-exponential Multiplier Penalty Function 2009 Shujun
Lian
Zhonghao
LI .
+ An Exponential-Trigonometric Optimal Interpolation Formula 2023 Kh. M. Shadimetov
A.K. Boltaev
+ A Modification of Hermite Sampling with a Gaussian Multiplier 2015 R. M. Asharabi
Jürgen Prestin
+ A new type of window functions constructed with exponential function 2023 Haichao Xu
Xingpao Suo

Works That Cite This (1)

Action Title Year Authors
+ A note on the cosine operator function for Mellin sampling series 2024 Andi Kivinukk
Gert Tamberg