A localized Erdős-Kac theorem for $\omega_y(p+a)$

Type: Article

Publication Date: 2023-02-06

Citations: 0

DOI: https://doi.org/10.46298/hrj.2023.10907

Abstract

Let $\omega_y(n)$ denote the number of distinct prime divisors of $n$ less than $y$. Suppose $y_n$ is an increasing sequence of positive real numbers satisfying $\log y_n = o(\log\log n)$. In this paper, we prove an Erd\"{o}s-Kac theorem for the distribution of $\omega_{y_n}(p+a)$, where $p$ runs over all prime numbers and $a$ is a fixed integer. We also highlight the connection between the distribution of $\omega_y(p-1)$ and Ihara's conjectures on Euler-Kronecker constants.

Locations

  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • Hardy-Ramanujan Journal - View - PDF

Similar Works

Action Title Year Authors
+ On the Bivariate Erdős-Kac Theorem and Correlations of the Möbius Function 2016 Alexander P. Mangerel
+ An Erdős-Kac theorem for Smooth and Ultra-Smooth integers 2017 Marzieh Mehdizadeh
+ PDF Chat A localized Erdős-Kac theorem 2021 Anup B. Dixit
M. Ram Murty
+ PDF Chat The Erdős-Ko-Rado Theorem for Integer Sequences 1999 Péter Frankl
Norihide Tokushige
+ An information-theoretic proof of the Erdős-Kac theorem 2022 Aidan Rocke
+ Erdős numbers 2019
+ On the friable mean-value of the Erdős-Hooley Delta function 2023 Bruno Martin
Gérald Tenenbaum
Julie Wetzer
+ A Generalization of the Erdős-Kac Theorem 2020 Joseph Squillace
+ PDF Chat An Erdös-Kac theorem for integers without large prime factors 1987 Krishnaswami Alladi
+ On the friable mean-value of the Erdős–Hooley Delta function 2024 Bruno Martin
Gérald Tenenbaum
J.M. Wetzer
+ PDF Chat A Generalization of the Erd\H{o}s-Kac Theorem 2024 Joseph Squillace
+ An Erdős-Kac theorem for integers with dense divisors 2022 Gérald Tenenbaum
Andreas Weingartner
+ SIEVING AND THE ERDŐS–KAC THEOREM 2007 Andrew Granville
K. Soundararajan
+ PDF Chat On a density problem of Erdös 1999 Safwan Akbik
+ The prime-counting Copeland–Erdős constant 2024 Janis M. Campbell
+ A Note on the Erdös-Feller-Pollard Theorem 1976 Mark A. Pinsky
+ A Note on the Erdos-Feller-Pollard Theorem 1976 Mark A. Pinsky
+ Generalizations of the Erdős–Kac Theorem and the Prime Number Theorem 2023 Biao Wang
Zhining Wei
Pan Yan
Shaoyun Yi
+ On Erdős sums of almost primes 2023 Ofir Gorodetsky
Jared Duker Lichtman
Mo Dick Wong
+ PDF Chat Théorème d’Erdős–Kac dans presque tous les petits intervalles 2018 Élie Goudout

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors